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Lay Abstract

Genes are like instruction manuals for cells. However, these instructions are not always
accessible, some are "open" and easy to read, while others are "closed" and harder to access. This
“accessibility” plays a crucial role in determining which genes are turned on or off, affecting
how cells work. Changes in gene accessibility are especially important in diseases like cancer,
where cells behave abnormally.

In this study, artificial intelligence (AI) models were developed on a breast cancer cell line called
MCEF-7 to predict whether a gene’s instructions are open or closed based on chemical signals in
the cell called histone modifications, and protein signals called transcription factor signals. These
signals help control gene activity. Machine learning and deep learning techniques were used to
train these models using publicly available biological data. The deep learning model was
compared against an existing tool that predicts chromatin accessibility using similar information
(Zhao et al., 2022). Even though it used fewer features, the model in this study performed better,
showing that it can find open and closed chromatin regions without needing DNA sequence data.
Among the different chemical signals tested, H3K4mel was found to be the most important for
making correct predictions.

Future work will look at more types of chromatin states, not just open or closed, and will use
RNA data to understand which genes are actually turned on. It will also test other breast cancer
cell lines to see if the patterns hold true. By combining different types of data, this approach
could help find new drug targets by showing which proteins are controlling gene activity in
tumours. A new idea is to predict how chromatin might change over time, which could help spot

early signs of cancer progression before they happen.



Scientific Abstract

Chromatin accessibility is a key determinant of gene regulation, influencing transcription factor
binding and transcriptional activation. Predicting accessible chromatin regions from histone
modifications and transcription factor signals has major implications for understanding
epigenetic mechanisms and cancer-specific regulation. However, studies often rely solely on
AUC-ROC for evaluation, overlooking metrics like MCC and F1 Score, which are critical for
imbalanced cancer datasets.

Chromatin accessibility is highly cell type-specific, with the most predictive histone marks and
transcription factors varying by context. Capturing these cancer-specific dynamics is essential, as
regulatory mechanisms differ between normal and malignant cells. This study develops and
evaluates machine learning and deep learning models using histone modification, transcription
factor binding, and ATAC-seq data from the MCF-7 breast cancer cell line (ENCODE). A deep
learning model was built using shared feedforward layers to process histone and transcription
factor inputs.

The model was benchmarked against an existing predictor that includes histone marks, TF motifs
and DNA sequence (Zhao et al., 2022). Despite using fewer features, the model in this study
outperformed it, showing strong predictive power for chromatin accessibility. This neural
network appears to be the first to focus solely on histone modifications and transcription factor
binding signals to study mechanistic drivers of cancer gene regulation. Feature importance
analysis identified H3K4mel, the enhancer priming mark, as most predictive, consistent with
known chromatin biology.

Future work will explore chromatin state classification, integrate RNA-seq to link accessibility
with gene expression and apply the approach to additional breast cancer cell lines. An

exploratory aim is to model chromatin velocity to predict future chromatin states.



Introduction

Cancer’s Unique Chromatin Landscape

Cancer has continued to be one of the leading causes of death worldwide (Ritchie, Spooner and
Roser, 2018). Artificial intelligence is an upcoming approach that has looked to tackle the
complexity of cancer by prioritising the understanding of its underlying mechanisms.

Gene regulation is controlled by complex and dynamic interactions between chromatin structure,
transcription factors (TFs) and histone modifications. Chromatin accessibility, in particular,
serves as a critical determinant of whether genomic regions are permissive to transcriptional
activation or remain silenced (Mansisidor and and Risca, 2022). Abnormal chromatin states are a
hallmark of cancer, where disruptions in regulatory networks contribute to uncontrolled cell
proliferation and disease progression (Hanahan and Weinberg, 2011; Locke et al, 2015;
Hanahan, 2022).

Characteristics of the MCF-7 Breast Cancer Cell Line

The Michigan Cancer Foundation 7 (MCF-7) cell line is a well-characterised model of luminal A
breast cancer, which is oestrogen receptor-positive (ER+), progesterone receptor-positive (PR+)
and HER2-negative. It was derived from a human breast donor via pleural effusion in 1973 and
has since been widely used to investigate hormone-responsive breast cancer due to its
dependency on oestrogen for proliferation and tumour formation in vivo (Welsh, 2013). It
remains a gold-standard model for evaluating endocrine therapies such as tamoxifen and
exploring ER-mediated signalling pathways (Holliday and Speirs, 2011; Beaver et al., 2013).

Genomically, MCF-7 harbours a number of hallmark mutations and copy number alterations
(CNAs) representative of luminal breast cancers. These include a hotspot PIK3CA mutation
(E545K) that activates the PI3K/AKT pathway, a frameshift mutation in GA7A3 impacting
transcriptional regulation, and a homozygous deletion of CDKN2A4 (pl16INK4a) which
contributes to cell cycle deregulation (Beaver et al., 2013; Liang et al., 2018). Uniquely, MCF-7
retains wild-type 7P53, aligning with many primary luminal A tumours. It also exhibits
high-level amplifications at loci including 1p13.1-p21.1, 17q22-q24.3, and 20q13.33 which are

regions frequently amplified in ER+ cancers (Hampton et al., 2009). These features make



MCF-7 a robust model for studying epigenetic regulation, chromatin accessibility and

therapeutic vulnerabilities in ER-positive breast cancer.

Histone Modifications and their Influence on the Regulatory Epigenome

Among the histone modifications studied in this project, H3K4mel is typically found at enhancer
elements and is particularly enriched at regions that are poised for activation. It serves as a
marker of potential regulatory activity and often works in tandem with other activating marks,
such as H3K27ac (Creyghton et al., 2010). H3K4me3 is a hallmark of active promoters and is
found near transcription start sites, reflecting ongoing or recent gene transcription (Vakoc et al.,
2006). H3K27ac, an acetylation mark, is also found in enhancers and promoters, but in contrast
to H3K4mel, it marks enhancers that are actively engaged in gene activation. The combination
of H3K4mel and H3K27ac is widely used to distinguish between poised and active enhancers
(Creyghton et al., 2010).

In contrast, H3K27me3 is a repressive mark deposited by Polycomb group proteins. It is
commonly found in regions of facultative heterochromatin and is involved in long-term gene
silencing during development and differentiation (Young et al., 2011). H3K9me3 is associated
with constitutive heterochromatin and marks regions of the genome that remain stably repressed,
such as pericentromeric domains (Padeken, Methot and Gasser, 2022). Finally, H3K36me3 is
found within gene bodies of actively transcribed genes and is thought to play a role in
transcription elongation and co-transcriptional RNA processing (Vakoc et al., 2006).

The balance and spatial arrangement of these histone marks contribute to the overall chromatin
state, influencing whether a genomic region is accessible or closed. Their combinatorial patterns
define epigenomic landscapes that are dynamic, cell-type specific, and tightly linked to gene
regulatory networks. Understanding these marks provides essential context for modelling
chromatin accessibility and identifying the regulatory mechanisms behind transcriptional control

1n cancer.



Oestrogen Receptor Positive (ER")-Associated Breast Cancer Transcription Factors and their

Role in Defining the Transcriptional Landscape

Transcription factors are sequence-specific DNA-binding proteins that control the transcription
of genetic information from DNA to messenger RNA. They act as central regulators of gene
expression by interacting with promoter and enhancer elements, often in coordination with
chromatin-modifying complexes. Beyond simply recognising DNA motifs, transcription factors
can influence chromatin architecture by recruiting co-activators, co-repressors and chromatin
remodelling enzymes (Weidemiiller ez al., 2021).

In the context of breast cancer, several transcription factors play pivotal roles in defining the
transcriptional landscape of hormone receptor-positive tumours. Oestrogen Receptor 1 (ESR1) is
one of the most studied transcription factors in breast cancer and functions as a ligand-activated
nuclear receptor. Upon binding oestrogen, ESR1 translocates to the nucleus and binds to
oestrogen response elements in the genome, where it recruits co-regulators and chromatin
remodelers that facilitate gene activation. It governs a wide range of cellular processes including
proliferation, differentiation and survival, and is a key driver in the luminal subtype of breast
cancer (Hua et al., 2018).

FOXALI is a pioneer transcription factor that can bind to condensed chromatin and facilitate the
recruitment of other transcription factors such as ESR1. It plays a crucial role in remodelling the
chromatin landscape and enabling hormone-dependent transcriptional activity. FOXATI is
essential for luminal lineage specification and its expression correlates with better prognosis in
ER-positive breast cancers (Augello, Hickey and Knudsen, 2011).

GATA3 is another critical luminal-specific transcription factor that acts both independently and
in tandem with ESR1 and FOXAI. It helps maintain epithelial cell identity and regulates genes
involved in differentiation and proliferation. GATA3 mutations are common in breast cancer and
often affect its DNA-binding domain, altering its regulatory functions (Adomas et al., 2014).
Together, these transcription factors orchestrate complex regulatory networks that are tightly
linked to chromatin accessibility. Their binding sites are enriched in accessible regions of the
genome and their activity is often reflected in changes to the surrounding histone modification

landscape. By including their binding signals in predictive models, one can capture a



mechanistically informative snapshot of the regulatory environment governing gene expression

in breast cancer cells.

Current Research on Chromatin Accessibility

High-throughput techniques such as ATAC-seq and ChIP-seq have revolutionised the ability to
interrogate chromatin accessibility and the epigenomic signatures underlying gene regulation
(Park, 2009; Buenrostro et al., 2015). However, traditional methods of analysing such data often
lack the scalability and predictive capacity required to infer regulatory patterns across the
genome and in unseen biological contexts (Yan et al., 2020).

The mapping of accessible regions across the genome using assays like ATAC-seq has
significantly advanced our ability to identify functionally relevant genomic elements. However,
while ATAC-seq and similar techniques provide a high-resolution readout of chromatin
openness, they do not offer mechanistic insight into why certain regions are accessible (Zhang et
al., 2008; McCarthy and O’Callaghan, 2014; Tarbell and Liu, 2019). To address this gap,
researchers are increasingly turning to computational models to infer chromatin accessibility
from underlying molecular features such as histone marks and transcription factor binding

signals (Zhao et al., 2022).

Mechanistic Modelling of Chromatin Accessibility in Breast Cancer - Objectives, State of the
Art and Implications for Cancer Epigenomics

Few models exist that rely solely on mechanistic epigenetic features to predict accessibility and
to my knowledge, none have done so specifically in the context of breast cancer. This study
addresses that gap by developing a neural network model to predict chromatin accessibility using
only histone modification and transcription factor ChIP-seq signal data, without incorporating
DNA sequence information. To ensure robustness and assess generalisability across the genome,
a leave-one-chromosome-out (LOCO) validation strategy was employed. This approach held out
chromosome 1 for testing while training on all others, thereby reducing the risk of data leakage
and overfitting to local sequence contexts. Compared to traditional random-split methods, LOCO

validation better simulates how models would perform on entirely unseen genomic regions,



making it a more stringent and biologically relevant validation technique (Mbatchou et al.,

2021).

In addition to the neural network, baseline models including Extra Trees Classifier and
Histogram Gradient Boosting Classifier from the sklearn.ensemble package (Pedregosa et al.,
2011) were implemented to benchmark performance. A linear regression model was also
included to confirm the significance of selected features.

This work has several implications for cancer research. Firstly, it assesses whether chromatin
accessibility can be effectively modelled from mechanistic data alone. Secondly, by identifying
key histone marks that regulate accessibility, this approach contributes to our understanding of
epigenetic dysregulation in breast cancer and highlights candidate features for further
investigation. This research will also pave the way for future applications in other cancer types
and cell lines, enabling comparative analyses of epigenomic landscapes across disease states.
Ultimately, this study builds a foundation for mechanistic, non-sequence-based modelling of
chromatin accessibility in cancer. It underscores the value of integrating epigenetic signals to
decipher regulatory dynamics and provides a practical framework for future work aimed at
linking accessibility to gene expression, targeted drug development and clinical phenotypes in

tumour evolution.

The Importance of Choosing the Correct ML Evaluation Metrics when Answering Biological
Questions

Class imbalance occurs when one class is represented far less than the other, in binary
classification models. In genomic and epigenomic studies, class imbalance is common, for
instance in this study, when open chromatin represents only a small fraction (~2%) of the entire
genome. Under these conditions, traditional accuracy becomes misleading, as high scores can be
achieved simply by predicting the dominant class (i.e. closed chromatin). Metrics such as
precision, recall, F1-score, MCC and AUC-ROC are more informative. Precision assesses how
many predicted positives are correct, while recall (or sensitivity) measures how many actual
positives have been identified. The F1-score balances precision and recall and is commonly used
in imbalanced binary classification tasks; however, it ignores true negatives and can overestimate

performance in cases where false positives also carry weight, particularly when addressing



biological questions with potential clinical relevance (Chicco and Jurman, 2020; Rauschert et al.,

2020).

The Matthews Correlation Coefficient (MCC) addresses these limitations by incorporating all
four values of the confusion matrix (TP, TN, FP, FN), offering a balanced, single-number
summary. Unlike F1 or AUC-ROC, MCC penalises disproportionate errors on either class,
making it especially well-suited for cancer epigenetics, where both sensitivity and specificity are
critical. A model predicting only the dominant class in a highly imbalanced dataset may show
high accuracy but yield an MCC of zero, accurately reflecting its lack of predictive power
(Chicco and Jurman, 2020; Newsham et al., 2024). The use of all metrics outlined ensures the
neural network performs robustly across both classes, providing a stringent and interpretable

assessment of model quality under biologically realistic imbalance.

Materials and Methods

Data Acquisition

To construct the deep learning models to predict chromatin accessibility, the well-characterised
breast cancer cell line, MCF-7 was used. To ensure high-quality data on chromatin accessibility,
transcription factor binding and histone modifications, datasets from ENCODE were selected
(Applications of ENCODE data to systematic analyses via data integration - ScienceDirect,
2018). The chromatin accessibility data was obtained by using bulk ATAC-seq and downloaded
from the ENCODE database as a BED file. The accession ID is ENCFF8210EF. The ChIP-seq
profiles of histone modifications and transcription factors were also downloaded from ENCODE
as bigWig files. A limitation of this study is that only a single ATAC-Seq peak file
(ENCFF8210EF) was used, as no additional independent replicates were available on ENCODE.
However, given the high-quality standards of ENCODE data processing, including rigorous peak
calling and reproducibility checks, this is unlikely to significantly impact the reliability of the
findings. All files were mapped to the GRCh38 genome. The annotation of all files is
summarised in Supp. Table 1. All ChIP-Seq signal values were reported as p-values, representing

the statistical significance of enrichment at each genomic position. ATAC-Seq peaks were



defined using a pseudoreplicated peak-calling approach, ensuring reproducibility across isogenic

replicates.

ATAC-Seq Data Processing and Visualisation

The distribution of chromatin accessibility was visualised across the genome, ATAC-Seq peak
density was plotted for each chromosome (chr) (chrl—chr22 and chrX). Peaks from the
ATAC-Seq dataset were binned into genomic intervals, and density histograms were generated to

assess the frequency and distribution of accessibility sites along the genome, Supp. Figure 1.

This allowed for the identification of chromatin accessibility patterns and potential sequencing

biases or coverage errors in peak distribution before model training.

Assignment of Chromatin Accessible and Non-Accessible Regions

To define chromatin accessibility regions, ATAC-Seq peaks were used to label genomic bins as
open (1) or closed (0) chromatin. The human genome (GRCh38) was segmented into
non-overlapping 1000 base pairs bins, covering all autosomes and chrX (excluding chrY due to
the MCF-7 cell line’s female origin). Each bin was initially assigned a default closed chromatin
(0) state, and bins overlapping ATAC-Seq peaks were labeled as open chromatin (1). This
approach allowed for structured representation of chromatin accessibility across the genome
while reducing the sparsity of peak-based methods.

A bin size of 1000 base pairs was chosen as a balance between resolution and computational
efficiency. This binning strategy ensures that chromatin accessibility is quantified at a
biologically relevant scale, approximately corresponding to the size of regulatory elements such
as enhancers and promoter regions. Following preprocessing, chromatin accessibility was
quantified, yielding 143,817 open chromatin regions (1) and 2,661,272 closed chromatin regions
(0), corresponding to ~5.13% overall chromatin accessibility. Previous studies have reported
genome-wide accessibility estimates of ~2—-3%, primarily in non-cancerous cell types (Klemm,
Shipony and Greenleaf, 2019). However, the higher accessibility observed in this study is likely
due to the cancerous nature of MCF-7 cells and binning at 1000 base pairs resolution, which may

capture broader regulatory activity compared to base-pair-level analyses.



To ensure the biological accuracy of chromatin accessibility peak assignment, peaks were

annotated using Hypergeometric Optimization of Motif EnRichment’s (HOMER)
annotatePeaks.pl command, Supp. Figure 2.

Assignment and Normalisation of Histone and Transcription Factor Signals to 1 Kilobase Bins

To systematically assign both histone modification and transcription factor (transcription factor)
binding signals to 1 kb genomic bins, ChIP-Seq, bigWig signal data were preprocessed and
mapped using a standardised workflow. Signal data from six histone marks (H3K4mel,
H3K4me3, H3K27ac, H3K27me3, H3K9me3, H3K36me3) and three transcription factors
(ESR1, FOXA1, GATA3) were first converted from bigWig to bedGraph format using the
bigWigToBedGraph command. These features were selected based on their established roles in
chromatin regulation and transcriptional activity in breast cancer (Jin et al., 2020)

The genomic bins and signal files were sorted by chromosome and genomic position to ensure
accurate alignment. Using bedtools map, mean signal intensity for each feature was computed
within each 1 kb bin by mapping the bedGraph files to the genomic bins. This process ensured
that both histone modification and transcription factor signals were assigned to the correct
genomic regions.

Missing values, typically arising from regions with undetectable signals, were replaced with zero
to maintain data consistency. Additionally, rows containing duplicate signals across multiple bins

were removed to prevent data leakage during model training.

Baseline Models for Benchmarking Chromatin Accessibility Prediction

To establish benchmark performance for chromatin accessibility prediction, traditional
ensemble-based, machine learning models, Extra Trees Classifier and Histogram Gradient
Boosting were implemented from the sklearn.ensemble package (Pedregosa et al., 2011).
Logistic Regression, specifically Ordinary Least Squares (OLS) regression, was used as a
statistical framework for evaluating feature importance from p-values and regression

coefficients.



Mechanistic Neural Network for Predicting Chromatin Accessibility

Model Architecture

A feedforward neural network was implemented to predict chromatin accessibility using histone
modification and transcription factor binding signal data. The input layer received a feature
vector containing nine signal intensities (six histone marks and three transcription factor binding
signals) per genomic bin. The first hidden layer comprised 64 neurons activated by the ReLU
function, followed by a dropout layer (0.3 probability) to prevent overfitting. A second hidden
layer with 32 ReLU-activated neurons was introduced, followed by another dropout layer to
further regularise the model. The final output layer contained a single neuron with a sigmoid
activation function, producing a probability score for chromatin accessibility, where a probability
threshold of >0.7 denoted open chromatin (1). All hyperparameters were chosen following grid

search hyperparameter tuning, Supp. Table 2. The model was compiled using binary

cross-entropy loss and optimised with the Adaptive Moment Estimation (Adam) optimiser

(Kingma and Ba, 2017), at a learning rate of 0.001.

Training Strategy, Handling Class Imbalance and Leave-One-Chromosome-Out (LOCO)
Validation

To address class imbalance, the majority class (closed chromatin) was downsampled to five
times the number of open chromatin regions before training. Features were normalised using
Min-Max Scaling (0—1 range), with scaling parameters computed solely on the training set to
prevent data leakage. The final model evaluation was conducted using a
Leave-One-Chromosome-Out (LOCO) Validation framework. In this setup, chromosome 1 was
excluded from training and used exclusively as the test set, ensuring that model predictions were
evaluated on completely unseen genomic regions. This approach prevents the model from
overfitting to chromosome-specific patterns and better reflects the real-world scenario in which
regulatory features must be predicted in new, unobserved genomic contexts.

During training, Stratified K-Fold Cross-Validation (K=5) was employed within the training set
to ensure robust performance estimation. Early stopping was implemented, monitoring validation

loss with a patience of five epochs, ensuring that training halted before overfitting occurred.



Class weights were adjusted to compensate for remaining class imbalance, assigning a 2x higher

weight to open chromatin regions to improve sensitivity for the minority class.

Results

Exploratory Data Analysis to Assess Feature Relevance in Open and Closed Chromatin States

The hypothesis for this study was that the features selected (six histone marks and three

transcription factors) are associated with chromatin accessibility and would have adequate

predictive capability to enable chromatin accessibility prediction. The hypothesis was validated

by assessing the feature signals between open and closed chromatin states using a Mann Whitney

U Test. To ensure unbiased evaluation, chromosome 1 was excluded from the analysis, as it was

reserved for final model validation, preventing data leakage and ensuring that statistical

comparisons were not influenced by the test set, Table 1.

Table 1: Mann-Whitney U Test Statistics for Histone Modifications and Transcription Factor Signals in Open and

Closed Chromatin

Feature

U-Statistic

p-value

Interpretation

H3K4mel 2.89 x 10! Strong association with open chromatin, corresponding with its role
as an enhancer mark.

H3K4me3 2.69 x 10" Strong association with open chromatin, corresponding with its role
as a promoter mark.

H3K27ac 2.74 x 10" Strong association with open chromatin, corresponding with its role
in active enhancers and promoters.

H3K27me3 1.07 x 10" Strongly enriched in closed chromatin, confirming its role as a
repressive histone mark.

H3K9me3 1.22 x 10" Consistently enriched in heterochromatin and repressed genomic
regions.




H3K36me3 1.65 x 10" | 2.75x 10 | Associated with transcriptional elongation regions, where the lower
p-value highlights its mixed enrichment based on chromatin

context.

ESR1 240 x 10" [0 Strong enrichment in open chromatin, indicating active regulatory

roles.

FOXA1 235x10" [0 Enriched in open chromatin, supporting its function in enhancer

accessibility.

GATA3 231 x10" O Strong enrichment in open chromatin, consistent with its role in

gene regulation.

To visualise the genome-wide distribution of histone modifications in open and closed chromatin
regions, histone signals were normalised by chromosome length and densities were plotted for

each chromatin state, Supp. Figure 3. Each histone mark showed distinct patterns, providing

insight into histone enrichment patterns and their relevance for chromatin state classification.
Additionally, to investigate the distribution of histone modification signals across different
genomic annotations, histone signals were normalised by chromosome length and analysed

within promoter, intergenic, exon, and intron regions, highlighting localisation patterns, Fig. 2.

Evaluation Metrics

All model performances were assessed using multiple evaluation metrics. The Area Under the
Receiver Operating Characteristic Curve (AUC-ROC) measured discriminatory power, while the
Matthews Correlation Coefficient (MCC) provided a robust assessment of classification quality
in imbalanced datasets. Precision, recall, and F1-score were calculated to evaluate predictive

performance.
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Figure 2: Boxplots depicting the distribution of normalised histone modification signals across genomic
annotations. Each panel represents a distinct histone mark, with signals normalised by chromosome length.
Promoters exhibit the highest enrichment of H3K4me3 and H3K27ac, while repressive marks H3K27me3 and
H3K9me3 are more abundant in intergenic and intronic regions. Outliers have been removed for clarity.

Baseline Models for Benchmarking Predictive Performance

To assess the performance of the neural network, two ensemble-based baseline models, Extra
Trees and Histogram Gradient Boosting from the sklearn.ensemble package were employed
(Pedregosa et al., 2011). Performance was assessed using a leave-one-chromosome-out (LOCO)
validation framework, with chromosome 1 held out as an unseen test set. This rigorous approach
ensured that predictions were not biased by local genomic context and better simulated
real-world application.

Both models demonstrated strong predictive power, achieving AUC scores of 0.934 and 0.938 on
the held-out chromosome, respectively. Both models also received scores of over 0.52 for their
F1 and a Matthews Correlation Coefficient (MCC) scores, with Histogram Gradient Boosting
slightly outperforming. Recall values were high for both classifiers (>0.78), while precision
scores remained lower (<0.42), indicating a higher rate of false positives. All performance

metrics can be viewed in Fig. 3.
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Mechanistic Neural Network Performance on Predicting Chromatin Accessibility

The neural network trained on histone modification and transcription factor binding signal data
successfully predicted chromatin accessibility in the MCF-7 breast cancer cell line. This model
was trained and evaluated using the same input features and LOCO validation framework as the
baseline models. The model architecture consisted of a fully connected neural network,
illustrated in Fig. 4.

The final model achieved high performance across all evaluation metrics, an AUC-ROC of
0.927, an AUPRC of 0.657, an MCC score of 0.580 and Recall and Precision scores of 0.6077
and 0.6048, respectively. These results demonstrate the model’s ability to sensitively and

specifically identify open chromatin regions using only mechanistic epigenomic inputs.

Histone Marks Are Sufficient Predictors of Accessibility

To further identify the relative contribution of different feature types, two additional models were
trained using only transcription factor signals or only histone modification signals. While both
transcription factor-only and histone-only models used the same architecture and training
procedure, their performance differed significantly. The transcription factor-only model showed
reduced accuracy, with an MCC of 0.327 and an F1 score of just 0.319. In contrast, the
histone-only model closely matched the full model in performance, achieving an MCC of 0.576

and an F1 score of 0.601, Fig. 5.

H3K4mel Emerges as the Dominant Regulatory Feature

Multiple interpretability approaches were applied to identify which features the model relied on
most for decision-making. Permutation importance revealed that H3K4mel, a histone mark
associated with enhancers, consistently contributed the most to model performance, highlighted
by the largest drop in MCC Score following its removal, Fig. 6. These findings support the role
of H3K4mel in marking regions of accessible chromatin, particularly enhancers, which are

crucial regulators of gene expression in hormone-responsive cancers like breast cancer.



SHAP Analysis for False Positive Predictions

To assess feature contributions in incorrect predictions, SHAP summary analysis was performed
on false positive cases for each input feature from the held-out chromosome 1 test set. Each dot
in the plot represents a genomic bin, with SHAP values on the x-axis indicating the magnitude
and direction of each feature’s influence on the model’s false positive predictions. The colour
gradient (low (blue) to high (red)) reflects the original feature signal value. Features were ranked

by their overall importance, as measured by the average absolute SHAP value, Fig. 7.
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Figure 3: Performance Metrics and Feature Importance from Machine Learning and Linear Models on Held-out
Chromosome 1. This figure summarises the performance of the Extra Trees and Histogram Gradient Boosting
classifiers evaluated on chromosome 1 using a leave-one-chromosome-out (LOCO) validation strategy. Stratified
K-Fold Cross-Validation (K=5) was applied during training to address class imbalance and ensure robust model
evaluation. Both ensemble models achieved high AUC scores (>0.93) and strong recall (>0.78), with moderate MCC
and F1 scores (>0.52), despite lower precision (<0.42). Additionally, an Ordinary Least Squares (OLS) linear
regression model was used to estimate feature importance via regression coefficients. Feature contributions are
visualised as effect sizes, with blue indicating positive association with open chromatin and red indicating
association with closed chromatin. This analysis highlights the relative influence of each histone modification and
transcription factor in predicting chromatin accessibility.
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Figure 4: Neural network architecture for predicting chromatin accessibility. The model is a fully connected
feedforward neural network. The input layer receives nine features per genomic bin (six histone marks and three
transcription factor signals). This is followed by two hidden layers with 64 and 32 neurons, respectively, each using
ReLU activation functions and dropout layers (dropout rate = 0.3) to reduce overfitting. The output layer consists of
a single neuron with a sigmoid activation function, generating a probability score for chromatin accessibility.
Hyperparamaters were determined by grid search hyperparameter tuning (see Supp. Table 2). The model was trained
with binary cross-entropy loss and optimised using the Adam optimiser at a learning rate of 0.001.
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Figure 5: Comparative Performance of Histone-only and Transcription Factor-only Models in Predicting
Chromatin Accessibility. This figure compares the performance of two models trained separately using either
histone modification signals or transcription factor binding signals to predict chromatin accessibility. Both models
used the same neural network architecture and training strategy as the full model. The histone-only model
demonstrated strong predictive performance, closely matching the full feature set, with a Matthews Correlation
Coefficient (MCC) of 0.576 and an F1 score of 0.601. In contrast, the transcription factor-only model showed
reduced predictive power, with an MCC score of 0.327 and an F1 score of 0.319. These results highlight the greater
standalone predictive value of histone modification signals in determining chromatin state.
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Figure 6: Permutation Importance of Epigenetic Features Based on MCC Score. This figure shows the
permutation importance of each input feature, measured by the change in Matthews Correlation Coefficient (MCC)
when the feature values are randomly shuffled. A greater drop in MCC indicates higher importance. H3K4mel
exhibited the largest decrease in MCC score, suggesting it played the most critical role in model predictions. Other
features, including H3K27ac and H3K4me3, also showed moderate contributions. This analysis highlights the
relative impact of individual histone modifications and transcription factor signals in predicting chromatin
accessibility.
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Figure 7: SHAP Summary Plot of Feature Contributions for False Positive Predictions. This plot displays
SHAP values for all input features derived from false positive predictions on the held-out chromosome 1 test set.
Each point represents a single 1 kb genomic bin where the model predicted open chromatin incorrectly. The x-axis
indicates the SHAP value, which quantifies the impact of each feature on the model’s output for that instance. The
y-axis lists the features, including histone modification signals and transcription factor binding signals. Points are
coloured by the original feature value, with blue representing low values and red representing high values. Features
are ordered by their mean absolute SHAP value, indicating their relative importance in driving misclassification.



Discussion

H3K4mel as a Distinctive Chromatin Accessibility Predictor in Breast Cancer

Early and recent studies have shown that chromatin accessibility can be accurately predicted
using epigenetic features like histone modifications and transcription factor binding, often
without relying on DNA sequence. A pioneering analysis by (Cui et al., 2013) used support
vector regression models on ENCODE data to quantify how histone marks and transcription
factor binding correlate with chromatin “openness” (DNase hypersensitivity). They found that
these features are highly predictive of accessibility and largely redundant, in fact, a small subset
of histone marks and transcription factors could achieve very high predictive power. This
foreshadowed later machine learning approaches indicating that a core group of histone
modifications largely determine whether chromatin is accessible in a given cell context.

More recent work has leveraged deep learning for this task. (Zhao et al., 2022) built a two-layer
model integrating DNA sequence, transcription factor ChIP-seq binding, transcription factor
motifs and histone modification ChIP-seq signals to predict ATAC-seq accessibility in the
HepG2 and GM 12878 human cell lines. Their results showed that DNA sequence alone has
limited predictive power (AUC =0.6), whereas models using histone marks or transcription
factor binding data each achieved high accuracy (AUC =0.8-0.84) in classifying open vs closed
chromatin.

Notably, combining histone modifications and transcription factor features did not greatly
improve accuracy over using either alone, indicating these features carry overlapping
information. This was also seen in this study where the OLS regression analysis had a condition
number of 12500, which might indicate that there is strong multicollinearity between features.
This was further validated with a Spearman correlation matrix of all features, Supp. Figure 4.
(Zhao et al., 2022) identified five core histone modifications (H2AFZ, H3K4me2, H3K27ac,
H3K9ac and H3K4me3) that explain most of the accessibility signals across both cell types. This
aligns with the earlier finding by (Cui et al., 2013), that only a small number of chromatin
features are needed for robust predictions. In other words, active histone marks (like H3K4me3
or H3K27ac at promoters) and the binding of key transcription factors tend to co-occur at open

chromatin, making either data type a sufficient proxy for predicting accessibility.



However, unlike in this study, (Zhao et al., 2022)’s results show H3K4mel as a poor predictor of

chromatin accessibility, achieving a relative importance score of less than ten, which is five times
smaller than the strongest predictive features in HepG2 and GM 12878 (H2A.Z1 and H3K4me?2,
respectively). In (Cui et al., 2013)’s study H3K4mel received a prediction power score of ~0.4
compared to the strongest feature, H3K4me2, with a score of =0.7. In this study, however,
H3K4mel was the most predictive feature with its removal causing the largest drop in MCC
score (see Fig. 6). While these findings suggest that H3K4mel may serve as a distinctive
predictor of chromatin accessibility in breast cancer, definitive conclusions cannot be drawn
without evaluating additional features such as H3K4me2 and H2A.Z1.

These studies illustrate a trend: by feeding epigenetic input features into machine learning
models, one can achieve highly accurate predictions of ATAC-seq and DNase-seq peaks, often
exceeding the accuracy of DNA-sequence-based models. Importantly, such models also provide
biological interpretability, highlighting which histone marks are most influential in opening

chromatin, thus, bridging predictive performance with mechanistic insight.

Therapeutic Targeting of H3K4me1 and Its Writers in Cancer

KMT2C and KMT2D

Histone H3 lysine 4 monomethylation (H3K4mel) is a chromatin mark typically enriched at
gene enhancers and “poised” regulatory regions. It is deposited primarily by the
methyltransferases MLL3 and MLL4 (also known as KMT2C and KMT2D) as part of the
COMPASS family complexes. Dysregulation of these “writers” of H3K4mel has been
implicated in cancer, making them attractive targets for precision therapy. However, direct
inhibitors of MLL3/4 are not yet available clinically (Yao et al, 2024). Designing
small-molecule inhibitors for the SET domain of KMT2D is an active area of research. One
study reported virtual screening hits that bind the KMT2D catalytic domain, but with only
micromolar affinity (Yu et al., 2020).

To date, no specific MLL3/4 inhibitor has reached the market, reflecting both the complexity of
these large enzymes and the fact that in many cancers they function as tumor suppressors rather
than oncogenic drivers (Yao et al., 2024). For example, KMT2C (MLL?3) is frequently mutated

or lost in breast cancers and other tumors, and its loss is associated with poor prognosis and
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therapy resistance (Liu et al., 2021; Batalini et al., 2023). In such cases it would be ill-advised to

inhibit MLL3 further as the loss of H3K4mel may contribute to increased tumour progression.
By contrast, KMT2D (MLL4) has recently been shown to act as a context-dependent oncogenic
co-factor in certain settings. (Yao et al., 2024) also identified that in triple-negative breast cancer
(TNBC), KMT2D is often overexpressed and drives enhancer activation. It was found to
promote H3K4mel deposition at enhancers of oncogenes like MYC, thereby facilitating tumour
growth and metastasis. Additionally, the study also identified YBX1 as a novel “reader” protein
that recognizes H3K4mel marks deposited by KMT2D, hence, the KMT2D-H3K4mel-YBX1
axis was shown to epigenetically activate MYC and other pro-tumour genes in TNBC. Notably,
high KMT2D and YBXI1 levels correlated with poorer survival in breast cancer patients and
disrupting this axis significantly impeded TNBC cell growth and metastasis in preclinical
models. These findings suggest that inhibiting the H3K4mel writer (KMT2D) or its reader

(YBX1) could be a viable therapeutic strategy in aggressive, enhancer-driven breast cancers.

LSDI/KDMIA

Another way to target H3K4mel levels is to inhibit the enzymes that remove this mark (i.e.
histone demethylases). The LSD1/KDM1A enzyme specifically demethylates H3K4mel and
H3K4me2 (it can convert H3K4mel to unmethylated lysine) (Fang, Liao and Yu, 2019).
Elevated LSDI in basal tumors correlates with downregulation of BRCA1 and was associated
with increased sensitivity to PARP inhibitors (Nagasawa et al., 2015). This suggests
LSD1-overexpressing cancers have a “BRCA-reducing” phenotype that could be therapeutically
exploited. Several LSD1 inhibitors are now in clinical trials or advanced development, including
ORY-1001 (iadademstat), GSK-2879552, IMG-7289, INCB059872, and CC-90011 (Fang, Liao
and Yu, 2019). These compounds were initially tested in AML (acute myeloid leukemia) and
SCLC (small-cell lung cancer), where LSDI1 is critical for maintaining the undifferentiated,
stem-like state of the cancer cells. By inhibiting LSD1’s demethylase activity, such drugs
increase H3K4mel/2 levels at differentiation genes, thereby reactivating suppressed gene

programs and inhibiting tumor growth. Given LSD1’s role in breast cancer progression and



therapy resistance, there is interest in evaluating these inhibitors in breast cancer as well (Verigos

et al.,2019; Yang et al., 2022).

LSD2/KDM1B

Another H3K4mel/2 demethylase, LSD2/KDMIB, is less studied but has been reported to
demethylate enhancer marks and thereby silence genes like TP53; overactive LSD2 can promote
cancer cell proliferation by epigenetically repressing p53 and other targets (Wang, Ma and Yu,
2023). While no LSD2-specific inhibitors are in clinics, the success of LSD1 programs suggests
that targeting H3K4 methylation dynamics, either by inhibiting writers or erasers, is a promising

approach in oncology.

Implications for Breast Cancer Prognosis and Model Interpretability

Epigenetic Breast Cancer Stratification for Precision Oncology

These advances carry important implications for breast cancer prognosis and for the
interpretability of chromatin-based machine learning models. First, the status of
H3K4mel-associated regulators is emerging as a biomarker of prognosis in breast cancer. For
instance, high LSD1 expression (indicative of aggressive biology with low H3K4mel on certain
gene enhancers/promoters) is associated with significantly worse survival in basal-like breast
cancer (Nagasawa et al., 2015). Conversely, loss-of-function mutations in MLL3 (which
decrease H3K4mel) are linked to endocrine therapy resistance and poor outcome in ER-positive
breast cancers (Liu et al., 2021; Batalini et al., 2023). As noted previously, overexpression of
MLL4 and its H3K4mel mark correlates with poor prognosis in TNBC (Yao et al., 2024). This
opens discussion to investigate such relationships in oestrogen-amplified breast cancers.

These correlations suggest that measuring chromatin marks or the expression of their
writers/erasers could refine risk stratification. For example, a high H3K4mel enhancer signature
might identify tumors reliant on active enhancers (prone to metastasis), whereas low H3K4mel
in a normally MLL3-dependent context might flag a more therapy-resistant tumor. Such

knowledge can inform treatment decisions, for example, considering LSD1 inhibitor trials for



patients with LSDI1-overexpressing tumors, or PARP inhibitors for those with the LSD1-low
BRCA1 axis.

Mechanistic Evaluation of Breast Cancer Opens Doors to New Research Avenues

Secondly, using epigenetic features in predictive models enhances model interpretability, which
can yield biological insights. This neural network in this study and in (Zhao et al., 2022)’s not
only predicts accessibility but also highlights which features are driving the prediction. If a
model learns that H3K4mel and H3K27ac are the top predictors of open chromatin in a breast
cancer cell line, this reinforces the concept that active enhancer marks underlie the accessible
chromatin landscape of that tumour. In the future this could lead to the discovery of a shared,
fundamental epigenetic code for open chromatin. Identifying these key marks can direct
researchers to the master regulators of the cell’s epigenome, which could further influence
targeted drug development, as discussed above.

For example, if H3K4mel is consistently important in a model, one might investigate the
upstream MLL3/4 complexes or associated co-factors (like menin or WDRY) in that context. The
redundancy observed between transcription factor bindings and histone marks in the model is
also informative; it suggests that open chromatin is a concerted state maintained by both
transcription factors and histone modifications together. For therapy, this means clinicians could
either target the transcription factor (perhaps with a small-molecule inhibitor or degrader) or the
chromatin modifier (an epigenetic drug) to disrupt a given accessible region. In the TNBC
example, one could aim at YBX1 (the transcription factor reader) or KMT2D (the writer) to
collapse an oncogenic enhancer.

From a systems biology view, chromatin-feature-based models act as feature selectors, pointing
to which epigenetic signals are most critical. This aids interpretability and cross validation with
experiments. A model’s top features can be validated in the lab, such as by CRISPR-editing a
histone modifier or treating cells with an epigenetic inhibitor to see if chromatin accessibility and
gene expression change as predicted.

In summary, a growing body of work demonstrates that chromatin accessibility can be accurately

predicted from epigenetic profiles. These models have identified key histone marks (like



H3K4mel) as fundamental determinants of open chromatin, providing mechanistic insights that

complement sequence-based predictions.

In parallel, pharmacological targeting of the H3K4mel pathway is being pursued in oncology.
While direct MLL3/4 inhibitors remain under development, inhibitors of associated factors
(menin, WDRS5) and demethylases (LSD1) are showing promise in clinical trials. The
convergence of these research avenues suggests an exciting precision oncology paradigm. In the
future, clinicians could use chromatin-based models to identify tumor-specific epigenetic
vulnerabilities, and then apply epigenetic drugs to selectively target the aberrant chromatin states
that drive a given patient’s cancer. In breast cancer, this means the prospect of tailoring
treatments that intervene in enhancer activation programs or chromatin modifications (such as
aberrant H3K4mel patterns), potentially improving outcomes for subtypes with poor prognosis

and offering new strategies to combat therapy resistance.

The Implementation of RNA-Seq to Enable Multi-omic Breast Cancer Analyses

Incorporating RNA-seq data into chromatin accessibility prediction frameworks offers a critical
next step in linking regulatory potential with transcriptional output. While histone modifications
and transcription factor binding profiles provide a mechanistic basis for predicting open
chromatin, RNA-seq captures the functional consequence of these regulatory events. By
integrating transcriptomic data, future models could go beyond binary chromatin states to predict
which accessible regions are actively contributing to transcription. For example, enhancers
marked by H3K4mel that also correlate with upregulated nearby genes would offer strong
evidence of functional activation, allowing models to better prioritise biologically meaningful
regulatory elements. This could also assist in distinguishing poised enhancers from active ones in
breast cancer subtypes, refining the interpretability of models and improving precision in
identifying therapeutic targets.

Additionally, RNA-seq integration would enable the exploration of enhancer—promoter
interactions and regulatory network dynamics specific to cancer phenotypes. This study
highlighted H3K4mel as a key predictive marker, but does not capture downstream expression
changes that drive tumour behaviour. By connecting accessible chromatin regions to their gene

targets via co-expression or enhancer—promoter proximity frameworks by using Hi-C-informed



assignments, one could construct interpretable gene regulatory networks in breast cancer. This

could also help identify transcriptional programmes driven by specific histone-modifying
enzymes (such as KMT2D or LSDI1), opening avenues for stratifying patients based on
expression signatures linked to epigenetic vulnerabilities. In doing so, RNA-seq—guided models
could support the identification of synthetic lethal interactions or epigenetic—transcriptional

dependencies that are targetable in precision oncology.

Predicting Future States of Chromatin Accessibility - Chromatin Velocity

While this model’s prediction of chromatin accessibility from histone marks and transcription
factor binding is significantly biologically relevant, it largely relies on static snapshots of the
epigenome. However, tumour evolution is inherently dynamic, and recent innovations in RNA
velocity, which estimates the future transcriptional state of individual cells by analysing the
ratios of spliced and unspliced RNA, offers an untapped opportunity to integrate temporal
dynamics into chromatin modelling (Tang et al., 2023). The study leveraged RNA velocity
within their comboSC pipeline to inform drug prioritisation by inferring the likely trajectories of
immune and tumour cells, enabling personalised therapeutic optimisation at single-cell
resolution.

Extending this framework, an exploratory direction would involve adapting RNA velocity to
develop a concept of “chromatin velocity”, an extended computational model that not only infers
current transcriptomic dynamics but also anticipates future transcriptional states based on
chromatin accessibility or histone modification patterns. In breast cancer, this could identify
enhancer reprogramming events before they manifest, potentially forecasting epigenomic
vulnerabilities in aggressive or therapy-resistant subpopulations. Such predictions could be
integrated with histone modification-based models to dynamically prioritise epigenetic targets
like H3K4mel-modifying enzymes, thereby enabling pre-emptive therapeutic interventions
before phenotypic transitions occur, advancing the goals of precision oncology by targeting

chromatin state transitions unique to malignant cells.



Conclusion

This study demonstrates the feasibility and biological relevance of predicting chromatin
accessibility using only histone modification and transcription factor binding signals in the
MCF-7 breast cancer cell line. By developing and benchmarking a mechanistic neural network
against baseline models, it was shown that histone features, particularly H3K4mel, are sufficient
for accurate chromatin state prediction, with performance comparable or superior to models that
incorporate more expansive inputs. Importantly, the neural network model outperformed existing
frameworks despite using fewer features and no DNA sequence data, thereby offering a scalable,
interpretable alternative for inferring regulatory landscapes from ChIP-seq profiles alone.

These findings support a precision oncology paradigm in which chromatin-based models are
used not only for prediction, but for identifying epigenetic dependencies specific to malignant
states. The prominence of H3K4mel as a predictive feature, contrasted with its lower importance
in other cell types, suggests that enhancer priming mechanisms may play a unique role in
oestrogen receptor-positive breast cancer. Furthermore, mechanistic insights derived from this
modelling approach provide a foundation for therapeutic intervention.

Future directions include expanding classification to additional chromatin states (e.g. poised or
permissive regions), integrating transcriptomic data from RNA-seq to link accessibility with
gene expression, and validating findings in other breast cancer cell lines. An exploratory avenue
also lies in adapting RNA velocity frameworks to derive “chromatin velocity” measures,
predicting future accessibility dynamics in response to tumour evolution. By moving towards
temporally-aware, multi-omic modelling, there is substantial potential to pre-empt regulatory
shifts that underlie resistance and metastasis. Ultimately, this work highlights how AI models
trained on interpretable epigenetic features can advance our understanding of chromatin
regulation in cancer, refine prognostic tools, and lay the groundwork for selectively targeting

epigenomic vulnerabilities in breast cancer.



Bibliography

Adomas, A.B. ef al. (2014) ‘Breast tumor specific mutation in GATA3 affects physiological
mechanisms regulating transcription factor turnover’, BMC Cancer, 14(1), p. 278. Available at:
https://doi.org/10.1186/1471-2407-14-278.

Applications of ENCODE data to systematic analyses via data integration - ScienceDirect
(2018). Available at:
https://www.sciencedirect.com/science/article/abs/pi1/S2452310018300593?via%3Dihub
(Accessed: 9 March 2025).

Augello, M.A., Hickey, T.E. and Knudsen, K.E. (2011) ‘FOXA1: master of steroid receptor
function in cancer’, The EMBO Journal, 30(19), pp. 3885-3894. Available at:
https://doi.org/10.1038/embo0j.2011.340.

Batalini, F. ef al. (2023) ‘Association of KMT2C loss-of-function mutations in circulating tumor
DNA and prolonged response to the combination of PARP1 and PI3Ki.’, Journal of Clinical
Oncology, 41(16_suppl), pp. €13003—e13003. Available at:
https://doi.org/10.1200/JC0O.2023.41.16_suppl.e13003.

Beaver, J.A. et al. (2013) ‘PIK3CA and AKT1 mutations have distinct effects on sensitivity to
targeted pathway inhibitors in an isogenic luminal breast cancer model system’, Clinical cancer

research : an official journal of the American Association for Cancer Research, 19(19), pp.
5413-5422. Available at: https://doi.org/10.1158/1078-0432.CCR-13-0884.

Buenrostro, J.D. et al. (2015) ‘ATAC-seq: A Method for Assaying Chromatin Accessibility
Genome-Wide’, Current Protocols in Molecular Biology, 109(1), p. 21.29.1-21.29.9. Available
at: https://doi.org/10.1002/0471142727.mb2129s109.

Chicco, D. and Jurman, G. (2020) ‘The advantages of the Matthews correlation coefficient
(MCC) over F1 score and accuracy in binary classification evaluation’, BMC Genomics, 21(1), p.
6. Available at: https://doi.org/10.1186/s12864-019-6413-7.

Creyghton, M.P. et al. (2010) ‘Histone H3K27ac separates active from poised enhancers and
predicts developmental state’, Proceedings of the National Academy of Sciences, 107(50), pp.
21931-21936. Available at: https://doi.org/10.1073/pnas.1016071107.

Cui, P. et al. (2013) ‘A Quantitative Analysis of the Impact on Chromatin Accessibility by
Histone Modifications and Binding of Transcription Factors in DNase I Hypersensitive Sites’,
BioMed Research International, 2013, p. 914971. Available at:
https://doi.org/10.1155/2013/914971.

Fang, Y., Liao, G. and Yu, B. (2019) ‘LSD1/KDMI1A inhibitors in clinical trials: advances and
prospects’, Journal of Hematology & Oncology, 12(1), p. 129. Available at:
https://doi.org/10.1186/s13045-019-0811-9.

Hampton, O.A. ef al. (2009) ‘A sequence-level map of chromosomal breakpoints in the MCF-7



breast cancer cell line yields insights into the evolution of a cancer genome’, Genome Research,
19(2), pp. 167-177. Available at: https://doi.org/10.1101/gr.080259.108.

Hanahan, D. (2022) Hallmarks of Cancer: New Dimensions | Cancer Discovery | American
Association for Cancer Research. Available at:
https://aacrjournals.org/cancerdiscovery/article/12/1/31/675608/Hallmarks-of-Cancer-New-Dime
nsionsHallmarks-of (Accessed: 26 March 2025).

Hanahan, D. and Weinberg, R.A. (2011) ‘Hallmarks of Cancer: The Next Generation’, Cell,
144(5), pp. 646—674. Available at: https://doi.org/10.1016/j.cell.2011.02.013.

Heinz, S. ef al. (2010) ‘Simple combinations of lineage-determining transcription factors prime
cis-regulatory elements required for macrophage and B cell identities’, Molecular Cell, 38(4),
pp. 576-589. Available at: https://doi.org/10.1016/j.molcel.2010.05.004.

Holliday, D.L. and Speirs, V. (2011) ‘Choosing the right cell line for breast cancer research’,
Breast Cancer Research, 13(4), p. 215. Available at: https://doi.org/10.1186/bcr2889.

Hua, H. et al. (2018) ‘Mechanisms for estrogen receptor expression in human cancer’,
Experimental Hematology & Oncology, 7(1), p. 24. Available at:
https://doi.org/10.1186/s40164-018-0116-7.

Jin, W. et al. (2020) ‘Effect of the key histone modifications on the expression of genes related to
breast cancer’, Genomics, 112(1), pp. 853—858. Available at:
https://doi.org/10.1016/j.ygeno.2019.05.026.

Kingma, D.P. and Ba, J. (2017) ‘Adam: A Method for Stochastic Optimization’. arXiv. Available
at: https://doi.org/10.48550/arXiv.1412.6980.

Klemm, S.L., Shipony, Z. and Greenleaf, W.J. (2019) ‘Chromatin accessibility and the regulatory
epigenome’, Nature Reviews Genetics, 20(4), pp. 207-220. Available at:
https://doi.org/10.1038/s41576-018-0089-8.

Liang, J. et al. (2018) ‘CDKN2A inhibits formation of homotypic cell-in-cell structures’,
Oncogenesis, 7(6), pp. 1-8. Available at: https://doi.org/10.1038/s41389-018-0056-4.

Liu, X. et al. (2021) ‘KMT?2C is a potential biomarker of prognosis and chemotherapy sensitivity
in breast cancer’, Breast Cancer Research and Treatment, 189(2), pp. 347-361. Available at:
https://doi.org/10.1007/s10549-021-06325-1.

Locke, W.J. et al. (2015) ‘Coordinated epigenetic remodelling of transcriptional networks occurs
during early breast carcinogenesis’, Clinical Epigenetics, 7(1), p. 52. Available at:
https://doi.org/10.1186/s13148-015-0086-0.

Mansisidor, A.R. and and Risca, V.I. (2022) ‘Chromatin accessibility: methods, mechanisms, and
biological insights’, Nucleus, 13(1), pp. 238-278. Available at:



https://doi.org/10.1080/19491034.2022.2143106.

Mbatchou, J. et al. (2021) ‘Computationally efficient whole-genome regression for quantitative
and binary traits’, Nature Genetics, 53(7), pp. 1097-1103. Available at:
https://doi.org/10.1038/s41588-021-00870-7.

McCarthy, M.T. and O’Callaghan, C.A. (2014) ‘PeaKDEck: a kernel density estimator-based
peak calling program for DNasel-seq data’, Bioinformatics, 30(9), pp. 1302—1304. Available at:
https://doi.org/10.1093/bioinformatics/btt774.

Nagasawa, S. et al. (2015) ‘LSD1 Overexpression Is Associated with Poor Prognosis in
Basal-Like Breast Cancer, and Sensitivity to PARP Inhibition’, PLOS ONE, 10(2), p. €¢0118002.
Available at: https://doi.org/10.1371/journal.pone.0118002.

Newsham, 1. ef al. (2024) ‘Early detection and diagnosis of cancer with interpretable machine
learning to uncover cancer-specific DNA methylation patterns’, Biology Methods & Protocols,
9(1), p. bpae028. Available at: https://doi.org/10.1093/biomethods/bpae(028.

Padeken, J., Methot, S.P. and Gasser, S.M. (2022) ‘Establishment of H3K9-methylated
heterochromatin and its functions in tissue differentiation and maintenance’, Nature Reviews
Molecular Cell Biology, 23(9), pp. 623—640. Available at:
https://doi.org/10.1038/s41580-022-00483-w.

Park, P.J. (2009) ‘ChIP-seq: advantages and challenges of a maturing technology’, Nature
Reviews Genetics, 10(10), pp. 669—-680. Available at: https://doi.org/10.1038/nrg2641.

Pedregosa, F. et al. (2011) ‘Scikit-learn: Machine Learning in Python’, J. Mach. Learn. Res.,
12(null), pp. 2825-2830.

Rauschert, S. ef al. (2020) ‘Machine learning and clinical epigenetics: a review of challenges for
diagnosis and classification’, Clinical Epigenetics, 12(1), p. 51. Available at:
https://doi.org/10.1186/s13148-020-00842-4.

Ritchie, H., Spooner, F. and Roser, M. (2018) ‘Causes of death’, Our World in Data [Preprint].
Available at: https://ourworldindata.org/causes-of-death (Accessed: 9 October 2022).

Tang, C. et al. (2023) ‘Personalized tumor combination therapy optimization using the
single-cell transcriptome’, Genome Medicine, 15(1), p. 105. Available at:
https://doi.org/10.1186/s13073-023-01256-6.

Tarbell, E.D. and Liu, T. (2019) ‘HMMRATAC: a Hidden Markov ModeleR for ATAC-seq’,
Nucleic Acids Research, 47(16), p. €91. Available at: https://doi.org/10.1093/nar/gkz533.

Vakoc, C.R. et al. (2006) ‘Profile of Histone Lysine Methylation across Transcribed Mammalian
Chromatin’, Molecular and Cellular Biology [Preprint]. Available at:
https://doi.org/10.1128/MCB.01529-06.



Verigos, J. et al. (2019) ‘The Histone Demethylase LSD1/KDM1A Mediates Chemoresistance in
Breast Cancer via Regulation of a Stem Cell Program’, Cancers, 11(10), p. 1585. Available at:
https://doi.org/10.3390/cancers11101585.

Wang, N., Ma, T. and Yu, B. (2023) ‘Targeting epigenetic regulators to overcome drug resistance
in cancers’, Signal Transduction and Targeted Therapy, 8(1), pp. 1-24. Available at:
https://doi.org/10.1038/s41392-023-01341-7.

Weidemiiller, P. et al. (2021) ‘Transcription factors: Bridge between cell signaling and gene
regulation’, PROTEOMICS, 21(23-24), p. 2000034. Available at:
https://doi.org/10.1002/pmic.202000034.

Welsh, J. (2013) ‘Chapter 40 - Animal Models for Studying Prevention and Treatment of Breast
Cancer’, in P.M. Conn (ed.) Animal Models for the Study of Human Disease. Boston: Academic
Press, pp. 997-1018. Available at: https://doi.org/10.1016/B978-0-12-415894-8.00040-3.

Yan, F. ef al. (2020) ‘From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis’,
Genome Biology, 21(1), p. 22. Available at: https://doi.org/10.1186/s13059-020-1929-3.

Yang, G.-J. et al. (2022) A state-of-the-art review on LSD1 and its inhibitors in breast cancer:
Molecular mechanisms and therapeutic significance’, Frontiers in Pharmacology, 13. Available
at: https://doi.org/10.3389/fphar.2022.989575.

Yao, B. ef al. (2024) ‘KMT2D-mediated H3K4mel recruits YBXI1 to facilitate triple-negative
breast cancer progression through epigenetic activation of c-Myc’, Clinical and Translational
Medicine, 14(7), p. e1753. Available at: https://doi.org/10.1002/ctm2.1753.

Young, M.D. et al. (2011) ‘ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate
with transcriptional activity’, Nucleic Acids Research, 39(17), pp. 7415—7427. Available at:
https://doi.org/10.1093/nar/gkr416.

Yu, Q. et al. (2020) ‘Small molecule inhibitors of the prostate cancer target KMT2D’,
Biochemical and Biophysical Research Communications, 533(3), pp. 540-547. Available at:
https://doi.org/10.1016/.bbrc.2020.09.004.

Zhang, Y. et al. (2008) ‘Model-based Analysis of ChIP-Seq (MACS)’, Genome Biology, 9(9), p.
R137. Available at: https://doi.org/10.1186/gb-2008-9-9-r137.

Zhao, Y. et al. (2022) ‘Computational modeling of chromatin accessibility identified important
epigenomic regulators’, BMC Genomics, 23(1), p. 19. Available at:
https://doi.org/10.1186/s12864-021-08234-5.



Appendices

Supplementary Table 1

Dataset summary. The ENCODE accession number, experimental target, file format, replicates,

genome assembly and data processing type are provided in the table below.

Supplementary Table 1: Summary of ATAC-Seq and Histone ChIP-Seq Datasets Used in This Study

Experimental File Accession Histone Replicates Genome  Data Processing
Target 1)) Mark / Assembly
Assay Type
ATAC-Seq ENCFF8210EF | Chromatin BED Isogenic Rep | GRCh38 Pseudoreplicated
Accessibility | (gzipped) 1,2 Peaks

ChIP-Seq ENCFF025QZH | H3K27me3 bigWig Isogenic Rep | GRCh38 Signal p-value
1,2 output

ChIP-Seq ENCFF372GMC | H3K4mel bigWig Isogenic Rep | GRCh38 Signal p-value
1,2 output

ChIP-Seq ENCFF138YNG | H3K27ac bigWig Isogenic Rep | GRCh38 Signal p-value
1,2 output

ChIP-Seq ENCFF163MXP | H3K4me3 bigWig Isogenic Rep | GRCh38 Signal p-value
1,2 output

ChIP-Seq ENCFF910BRP | H3K36me3 bigWig Isogenic Rep | GRCh38 Signal p-value
1,2 output

ChIP-Seq ENCFF481DZL | H3K9me3 bigWig Isogenic Rep | GRCh38 Signal p-value
1,2 output

Chromatin State | ENCFF506GEX | ChromHMM | BED Isogenic Rep | GRCh38 Semi-automated

Annotations (gzipped) | 1,2 genome
annotation




Supplementary Figure 1

Supplementary Figure 1: ATAC-Seq Peak Density Across All Chromosomes. Histograms displaying the
distribution of ATAC-Seq peak density across all chromosomes (chrl—chr22 and chrX) in the MCF-7 cell line. Peaks
were identified using a pseudoreplicated peak-calling approach, ensuring reproducibility across isogenic replicates.
The x-axis represents the genomic position in base pairs, while the y-axis represents the frequency of peaks within
100 evenly spaced genomic bins. Variability in peak density across chromosomes reflects differences in chromatin
accessibility, with certain regions exhibiting higher regulatory activity. Peaks on chrX provide insights into the

regulation of sex chromosome-associated genes in this breast cancer-derived cell line.



Supplementary Figure 2

HOMER is a widely used software suite designed for the identification and annotation of
regulatory elements in genomic data, including promoters, enhancers, and other functional
regions (Heinz et al., 2010). Genomic bins from the chromatin accessibility dataset were mapped
to functional genomic annotations based on HOMER's precomputed reference databases. Each
bin was classified into one of four genomic categories: Promoter, Intergenic, Exon, or Intron,
based on overlap with annotated peaks. A bin was assigned to a category if its genomic

coordinates overlapped with a corresponding HOMER annotation.
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Supplementary Figure 2: Genomic Region Distribution (HOMER) of Peaks. Bar plot displaying the proportion
of ATAC-seq peaks annotated in different genomic regions using HOMER. The majority of peaks are located in
introns and intergenic regions, with a smaller proportion in promoters and exons, highlighting the widespread nature
of chromatin accessibility beyond promoter regions.



Supplementary Figure 3
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Supplementary Figure 3: Genome-wide distribution of histone modifications in open and closed chromatin.
Histograms display the normalised signal intensity of six histone modifications across the genome, separated by
chromatin accessibility state. (Top) Histone signal densities in open chromatin (blue), showing enrichment of active
marks such as H3K4me3 and H3K27ac. (Bottom) Histone signal densities in closed chromatin (red), where
repressive marks such as H3K9me3 are more prominent. The x-axis represents the normalised genomic position,
adjusting for chromosome length, while the y-axis denotes the normalised histone signal density. These plots
highlight distinct histone modification patterns associated with chromatin accessibility states.



Supplementary Table 2

Grid Search Results Across Class Weights, Thresholds and Downsampling Ratios. The findings
support the utility of histone modifications and transcription factor binding signals as predictive
features for chromatin accessibility modeling. To ensure unbiased evaluation, chromosome 1 was
excluded from the analysis, as it was reserved for final model validation, preventing data leakage

and ensuring that statistical comparisons were not influenced by the test set.

Supplementary Table 2: Grid Search Hyperparameter Tuning of LOCO Validation Model

Class Weights Threshold Downsampling AUC AUPRC  Precision

of Majority

Class (0)
{0:1,1: 2} 0.5 15 0.927101 | 0.663065 | 0.651528 | 0.571450 | 0.587534
{0: 1, 1: 2} 0.7 10 0.926923 | 0.659017 | 0.739667 | 0.490572 | 0.583029
{0: 1, 1: 2} 0.7 5 0.926472 | 0.654996 | 0.604997 | 0.603256 | 0.579429
{0: 1, 1: 16.00} 0.9 10 0.925037 | 0.652168 | 0.624370 [ 0.582052 | 0.578955
{0: 1, 1: 16.00} 0.9 15 0.923326 | 0.646632 | 0.639239 [ 0.564786 | 0.577575
{0: 1, 1: 2} 0.5 10 0.926072 | 0.656677 | 0.570452 | 0.631882 | 0.574069
{0: 1, 1: 2} 0.7 15 0.927039 | 0.663149 | 0.810857 [ 0.427565 | 0.571843
{0:1,1: 2} 0.9 5 0.926639 | 0.656444 | 0.808316 | 0.415146 | 0.562221
{0:1,1: 2} 0.3 15 0.927548 | 0.660471 | 0.508380 | 0.682242 | 0.559354
{0: 1, 1: 16.00} 0.9 5 0.924519 | 0.648529 | 0.448371 | 0.716850 | 0.533427
{0:1,1: 2} 0.3 10 0.926711 | 0.661218 | 0.436271 | 0.737448 | 0.533039
{0:1, 1: 2} 0.5 5 0.925032 | 0.651616 | 0.426799 | 0.737372 | 0.526013




{0: 1, 1: 16.00} 0.7 15 0.922552 1 0.642624 | 0.401362 | 0.749867 | 0.511550
{0:1,1: 2} 0.9 10 0.929306 | 0.667085 | 0.924780 | 0.278379 | 0.494132
{0: 1, 1: 2} 0.9 15 0.922231 | 0.644067 | 0.898820 [ 0.282544 | 0.490011
{0: 1, 1: 16.00} 0.7 10 0.923884 | 0.650270 | 0.336945 | 0.803029 | 0.477306
{0: 1, 1: 2} 0.3 5 0.926406 | 0.654101 | 0.310036 | 0.825369 | 0.460066
{0: 1, 1: 16.00} 0.5 15 0.926075 1 0.653978 | 0.274070 | 0.848921 | 0.431814
{0: 1, 1: 16.00} 0.7 5 0.925609 | 0.651542 | 0.261812 | 0.856872 | 0.421261
{0: 1, 1: 16.00} 0.5 10 0.926664 | 0.656907 | 0.234348 | 0.882393 | 0.397914
{0: 1, 1: 16.00} 0.3 15 0.925068 | 0.652029 | 0.217604 | 0.889284 | 0.379644
{0: 1, 1: 16.00} 0.5 5 0.923603 | 0.644035 | 0.215452 | 0.888451 | 0.376728
{0: 1, 1: 16.00} 0.3 10 0.925818 | 0.650988 | 0.191236 | 0.906172 | 0.349859
{0: 1, 1: 16.00} 0.3 5 0.922798 | 0.641753 | 0.173266 | 0.914881 | 0.326493
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Supplementary Figure 4: Spearman Correlation Matrix of Histone Modifications and Transcription Factor
Binding Signals. This heatmap shows the pairwise Spearman correlation coefficients between six histone
modification signals and three transcription factor binding signals used as input features for chromatin accessibility
prediction. Moderate positive correlations were observed between H3K4mel, H3K4me3, and H3K27ac, three marks
associated with active regulatory elements. Transcription factors ESR1, FOXAI1, and GATA3 also showed modest
correlation with these active histone marks, particularly H3K4mel and H3K27ac. These patterns indicate potential
redundancy in predictive features, aligning with prior observations that combining histone marks and transcription
factor signals yields minimal performance gain over using histone modifications alone (see Fig. 5). This redundancy
was further evidenced by a high condition number (12500) in the Ordinary Least Squares (OLS) regression analysis,
further compounding multicollinearity among features. Such overlap supports the notion that a core subset of
chromatin features is sufficient to capture accessibility patterns, consistent with findings from (Cui et al., 2013) and
(Zhao et al., 2022).


https://docs.google.com/document/d/1OOqU6X795Na5zpH-VCl1zlbOiJlCpk9z2uaEgyfcHiI/edit?pli=1&tab=t.pde8bhlxnjlm#heading=h.jecg8tfc6nui

	 
	 
	 
	 
	 
	 
	Using Neural Networks To Understand Gene Regulation In the MCF-7 Breast Cancer Cell Line 
	 
	Student Declaration of Academic Integrity 
	Table of Contents 
	List of Abbreviations 
	Lay Abstract 
	 
	Scientific Abstract 
	 
	Introduction 
	Cancer’s Unique Chromatin Landscape 
	Characteristics of the MCF-7 Breast Cancer Cell Line 
	Histone Modifications and their Influence on the Regulatory Epigenome 
	Oestrogen Receptor Positive (ER+)-Associated Breast Cancer Transcription Factors and their Role in Defining the Transcriptional Landscape  
	Current Research on Chromatin Accessibility 
	Mechanistic Modelling of Chromatin Accessibility in Breast Cancer - Objectives, State of the Art and Implications for Cancer Epigenomics 
	The Importance of Choosing the Correct ML Evaluation Metrics when Answering Biological Questions 

	Materials and Methods 
	Data Acquisition 
	ATAC-Seq Data Processing and Visualisation 

	 
	Assignment of Chromatin Accessible and Non-Accessible Regions 
	Assignment and Normalisation of Histone and Transcription Factor Signals to 1 Kilobase Bins 
	Baseline Models for Benchmarking Chromatin Accessibility Prediction 
	Mechanistic Neural Network for Predicting Chromatin Accessibility 
	Model Architecture 
	 
	Training Strategy, Handling Class Imbalance and Leave-One-Chromosome-Out (LOCO) Validation  


	Results 
	Exploratory Data Analysis to Assess Feature Relevance in Open and Closed Chromatin States 
	Table 1: Mann-Whitney U Test Statistics for Histone Modifications and Transcription Factor Signals in Open and Closed Chromatin 

	Evaluation Metrics 
	 
	Figure 2: Boxplots depicting the distribution of normalised histone modification signals across genomic annotations. Each panel represents a distinct histone mark, with signals normalised by chromosome length. Promoters exhibit the highest enrichment of H3K4me3 and H3K27ac, while repressive marks H3K27me3 and H3K9me3 are more abundant in intergenic and intronic regions. Outliers have been removed for clarity. 
	Baseline Models for Benchmarking Predictive Performance 
	Mechanistic Neural Network Performance on Predicting Chromatin Accessibility 
	Histone Marks Are Sufficient Predictors of Accessibility 
	H3K4me1 Emerges as the Dominant Regulatory Feature 
	SHAP Analysis for False Positive Predictions 
	Figure 3: Performance Metrics and Feature Importance from Machine Learning and Linear Models on Held-out Chromosome 1. This figure summarises the performance of the Extra Trees and Histogram Gradient Boosting classifiers evaluated on chromosome 1 using a leave-one-chromosome-out (LOCO) validation strategy. Stratified K-Fold Cross-Validation (K=5) was applied during training to address class imbalance and ensure robust model evaluation. Both ensemble models achieved high AUC scores (>0.93) and strong recall (>0.78), with moderate MCC and F1 scores (>0.52), despite lower precision (<0.42). Additionally, an Ordinary Least Squares (OLS) linear regression model was used to estimate feature importance via regression coefficients. Feature contributions are visualised as effect sizes, with blue indicating positive association with open chromatin and red indicating association with closed chromatin. This analysis highlights the relative influence of each histone modification and transcription factor in predicting chromatin
	 
	 
	Figure 4: Neural network architecture for predicting chromatin accessibility. The model is a fully connected feedforward neural network. The input layer receives nine features per genomic bin (six histone marks and three transcription factor signals). This is followed by two hidden layers with 64 and 32 neurons, respectively, each using ReLU activation functions and dropout layers (dropout rate = 0.3) to reduce overfitting. The output layer consists of a single neuron with a sigmoid activation function, generating a probability score for chromatin accessibility. Hyperparamaters were determined by grid search hyperparameter tuning (see Supp. Table 2). The model was trained with binary cross-entropy loss and optimised using the Adam optimiser at a learning rate of 0.001. 

	 
	 
	Figure 5: Comparative Performance of Histone-only and Transcription Factor-only Models in Predicting Chromatin Accessibility. This figure compares the performance of two models trained separately using either histone modification signals or transcription factor binding signals to predict chromatin accessibility. Both models used the same neural network architecture and training strategy as the full model. The histone-only model demonstrated strong predictive performance, closely matching the full feature set, with a Matthews Correlation Coefficient (MCC) of 0.576 and an F1 score of 0.601. In contrast, the transcription factor-only model showed reduced predictive power, with an MCC score of 0.327 and an F1 score of 0.319. These results highlight the greater standalone predictive value of histone modification signals in determining chromatin state. 
	Figure 6: Permutation Importance of Epigenetic Features Based on MCC Score. This figure shows the permutation importance of each input feature, measured by the change in Matthews Correlation Coefficient (MCC) when the feature values are randomly shuffled. A greater drop in MCC indicates higher importance. H3K4me1 exhibited the largest decrease in MCC score, suggesting it played the most critical role in model predictions. Other features, including H3K27ac and H3K4me3, also showed moderate contributions. This analysis highlights the relative impact of individual histone modifications and transcription factor signals in predicting chromatin accessibility. 
	Figure 7: SHAP Summary Plot of Feature Contributions for False Positive Predictions. This plot displays SHAP values for all input features derived from false positive predictions on the held-out chromosome 1 test set. Each point represents a single 1 kb genomic bin where the model predicted open chromatin incorrectly. The x-axis indicates the SHAP value, which quantifies the impact of each feature on the model’s output for that instance. The y-axis lists the features, including histone modification signals and transcription factor binding signals. Points are coloured by the original feature value, with blue representing low values and red representing high values. Features are ordered by their mean absolute SHAP value, indicating their relative importance in driving misclassification. 


	Discussion 
	H3K4me1 as a Distinctive Chromatin Accessibility Predictor in Breast Cancer 
	Therapeutic Targeting of H3K4me1 and Its Writers in Cancer 
	KMT2C and KMT2D 
	LSD1/KDM1A 
	LSD2/KDM1B 

	Implications for Breast Cancer Prognosis and Model Interpretability 
	Epigenetic Breast Cancer Stratification for Precision Oncology 
	Mechanistic Evaluation of Breast Cancer Opens Doors to New Research Avenues 

	The Implementation of RNA-Seq to Enable Multi-omic Breast Cancer Analyses 
	Predicting Future States of Chromatin Accessibility - Chromatin Velocity 

	Conclusion 
	 
	Bibliography 
	 
	Appendices 
	Supplementary Table 1 
	Supplementary Table 1: Summary of ATAC-Seq and Histone ChIP-Seq Datasets Used in This Study 

	 
	Supplementary Figure 1 
	Supplementary Figure 1: ATAC-Seq Peak Density Across All Chromosomes. Histograms displaying the distribution of ATAC-Seq peak density across all chromosomes (chr1–chr22 and chrX) in the MCF-7 cell line. Peaks were identified using a pseudoreplicated peak-calling approach, ensuring reproducibility across isogenic replicates. The x-axis represents the genomic position in base pairs, while the y-axis represents the frequency of peaks within 100 evenly spaced genomic bins. Variability in peak density across chromosomes reflects differences in chromatin accessibility, with certain regions exhibiting higher regulatory activity. Peaks on chrX provide insights into the regulation of sex chromosome-associated genes in this breast cancer-derived cell line. 
	Supplementary Figure 2 
	Supplementary Figure 2: Genomic Region Distribution (HOMER) of Peaks. Bar plot displaying the proportion of ATAC-seq peaks annotated in different genomic regions using HOMER. The majority of peaks are located in introns and intergenic regions, with a smaller proportion in promoters and exons, highlighting the widespread nature of chromatin accessibility beyond promoter regions. 

	 
	Supplementary Figure 3 
	Supplementary Figure 3: Genome-wide distribution of histone modifications in open and closed chromatin. Histograms display the normalised signal intensity of six histone modifications across the genome, separated by chromatin accessibility state. (Top) Histone signal densities in open chromatin (blue), showing enrichment of active marks such as H3K4me3 and H3K27ac. (Bottom) Histone signal densities in closed chromatin (red), where repressive marks such as H3K9me3 are more prominent. The x-axis represents the normalised genomic position, adjusting for chromosome length, while the y-axis denotes the normalised histone signal density. These plots highlight distinct histone modification patterns associated with chromatin accessibility states. 

	 
	Supplementary Table 2 
	Supplementary Table 2: Grid Search Hyperparameter Tuning of LOCO Validation Model 

	Supplementary Figure 4 
	Supplementary Figure 4: Spearman Correlation Matrix of Histone Modifications and Transcription Factor Binding Signals. This heatmap shows the pairwise Spearman correlation coefficients between six histone modification signals and three transcription factor binding signals used as input features for chromatin accessibility prediction. Moderate positive correlations were observed between H3K4me1, H3K4me3, and H3K27ac, three marks associated with active regulatory elements. Transcription factors ESR1, FOXA1, and GATA3 also showed modest correlation with these active histone marks, particularly H3K4me1 and H3K27ac. These patterns indicate potential redundancy in predictive features, aligning with prior observations that combining histone marks and transcription factor signals yields minimal performance gain over using histone modifications alone (see Fig. 5). This redundancy was further evidenced by a high condition number (12500) in the Ordinary Least Squares (OLS) regression analysis, further compounding multicollinearity among features. Such overlap supports the notion that a core subset of chromatin features is sufficient to capture accessibility patterns, consistent with findings from (Cui et al., 2013) and (Zhao et al., 2022). 




