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Lay Abstract 

Genes are like instruction manuals for cells. However, these instructions are not always 

accessible, some are "open" and easy to read, while others are "closed" and harder to access. This 

“accessibility” plays a crucial role in determining which genes are turned on or off, affecting 

how cells work. Changes in gene accessibility are especially important in diseases like cancer, 

where cells behave abnormally. 

In this study, artificial intelligence (AI) models were developed on a breast cancer cell line called 

MCF-7 to predict whether a gene’s instructions are open or closed based on chemical signals in 

the cell called histone modifications, and protein signals called transcription factor signals. These 

signals help control gene activity. Machine learning and deep learning techniques were used to 

train these models using publicly available biological data. The deep learning model was 

compared against an existing tool that predicts chromatin accessibility using similar information 

(Zhao et al., 2022). Even though it used fewer features, the model in this study performed better, 

showing that it can find open and closed chromatin regions without needing DNA sequence data. 

Among the different chemical signals tested, H3K4me1 was found to be the most important for 

making correct predictions. 

Future work will look at more types of chromatin states, not just open or closed, and will use 

RNA data to understand which genes are actually turned on. It will also test other breast cancer 

cell lines to see if the patterns hold true. By combining different types of data, this approach 

could help find new drug targets by showing which proteins are controlling gene activity in 

tumours. A new idea is to predict how chromatin might change over time, which could help spot 

early signs of cancer progression before they happen. 
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Scientific Abstract 

Chromatin accessibility is a key determinant of gene regulation, influencing transcription factor 

binding and transcriptional activation. Predicting accessible chromatin regions from histone 

modifications and transcription factor signals has major implications for understanding 

epigenetic mechanisms and cancer-specific regulation. However, studies often rely solely on 

AUC-ROC for evaluation, overlooking metrics like MCC and F1 Score, which are critical for 

imbalanced cancer datasets. 

Chromatin accessibility is highly cell type-specific, with the most predictive histone marks and 

transcription factors varying by context. Capturing these cancer-specific dynamics is essential, as 

regulatory mechanisms differ between normal and malignant cells. This study develops and 

evaluates machine learning and deep learning models using histone modification, transcription 

factor binding, and ATAC-seq data from the MCF-7 breast cancer cell line (ENCODE). A deep 

learning model was built using shared feedforward layers to process histone and transcription 

factor inputs. 

The model was benchmarked against an existing predictor that includes histone marks, TF motifs 

and DNA sequence (Zhao et al., 2022). Despite using fewer features, the model in this study 

outperformed it, showing strong predictive power for chromatin accessibility. This neural 

network appears to be the first to focus solely on histone modifications and transcription factor 

binding signals to study mechanistic drivers of cancer gene regulation. Feature importance 

analysis identified H3K4me1, the enhancer priming mark, as most predictive, consistent with 

known chromatin biology. 

Future work will explore chromatin state classification, integrate RNA-seq to link accessibility 

with gene expression and apply the approach to additional breast cancer cell lines. An 

exploratory aim is to model chromatin velocity to predict future chromatin states. 
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Introduction 

Cancer’s Unique Chromatin Landscape 

Cancer has continued to be one of the leading causes of death worldwide (Ritchie, Spooner and 

Roser, 2018). Artificial intelligence is an upcoming approach that has looked to tackle the 

complexity of cancer by prioritising the understanding of its underlying mechanisms.  

Gene regulation is controlled by complex and dynamic interactions between chromatin structure, 

transcription factors (TFs) and histone modifications. Chromatin accessibility, in particular, 

serves as a critical determinant of whether genomic regions are permissive to transcriptional 

activation or remain silenced (Mansisidor and and Risca, 2022). Abnormal chromatin states are a 

hallmark of cancer, where disruptions in regulatory networks contribute to uncontrolled cell 

proliferation and disease progression (Hanahan and Weinberg, 2011; Locke et al., 2015; 

Hanahan, 2022). 

 

Characteristics of the MCF-7 Breast Cancer Cell Line 

The Michigan Cancer Foundation 7 (MCF-7) cell line is a well-characterised model of luminal A 

breast cancer, which is oestrogen receptor-positive (ER+), progesterone receptor-positive (PR+) 

and HER2-negative. It was derived from a human breast donor via pleural effusion in 1973 and 

has since been widely used to investigate hormone-responsive breast cancer due to its 

dependency on oestrogen for proliferation and tumour formation in vivo (Welsh, 2013). It 

remains a gold-standard model for evaluating endocrine therapies such as tamoxifen and 

exploring ER-mediated signalling pathways (Holliday and Speirs, 2011; Beaver et al., 2013). 

Genomically, MCF-7 harbours a number of hallmark mutations and copy number alterations 

(CNAs) representative of luminal breast cancers. These include a hotspot PIK3CA mutation 

(E545K) that activates the PI3K/AKT pathway, a frameshift mutation in GATA3 impacting 

transcriptional regulation, and a homozygous deletion of CDKN2A (p16INK4a) which 

contributes to cell cycle deregulation (Beaver et al., 2013; Liang et al., 2018). Uniquely, MCF-7 

retains wild-type TP53, aligning with many primary luminal A tumours. It also exhibits 

high-level amplifications at loci including 1p13.1-p21.1, 17q22-q24.3, and 20q13.33 which are 

regions frequently amplified in ER+ cancers (Hampton et al., 2009). These features make 
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MCF-7 a robust model for studying epigenetic regulation, chromatin accessibility and 

therapeutic vulnerabilities in ER-positive breast cancer. 

 

Histone Modifications and their Influence on the Regulatory Epigenome 

Among the histone modifications studied in this project, H3K4me1 is typically found at enhancer 

elements and is particularly enriched at regions that are poised for activation. It serves as a 

marker of potential regulatory activity and often works in tandem with other activating marks, 

such as H3K27ac (Creyghton et al., 2010). H3K4me3 is a hallmark of active promoters and is 

found near transcription start sites, reflecting ongoing or recent gene transcription (Vakoc et al., 

2006). H3K27ac, an acetylation mark, is also found in enhancers and promoters, but in contrast 

to H3K4me1, it marks enhancers that are actively engaged in gene activation. The combination 

of H3K4me1 and H3K27ac is widely used to distinguish between poised and active enhancers 

(Creyghton et al., 2010). 

In contrast, H3K27me3 is a repressive mark deposited by Polycomb group proteins. It is 

commonly found in regions of facultative heterochromatin and is involved in long-term gene 

silencing during development and differentiation (Young et al., 2011). H3K9me3 is associated 

with constitutive heterochromatin and marks regions of the genome that remain stably repressed, 

such as pericentromeric domains (Padeken, Methot and Gasser, 2022). Finally, H3K36me3 is 

found within gene bodies of actively transcribed genes and is thought to play a role in 

transcription elongation and co-transcriptional RNA processing (Vakoc et al., 2006). 

The balance and spatial arrangement of these histone marks contribute to the overall chromatin 

state, influencing whether a genomic region is accessible or closed. Their combinatorial patterns 

define epigenomic landscapes that are dynamic, cell-type specific, and tightly linked to gene 

regulatory networks. Understanding these marks provides essential context for modelling 

chromatin accessibility and identifying the regulatory mechanisms behind transcriptional control 

in cancer. 
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Oestrogen Receptor Positive (ER+)-Associated Breast Cancer Transcription Factors and their 
Role in Defining the Transcriptional Landscape  

Transcription factors are sequence-specific DNA-binding proteins that control the transcription 

of genetic information from DNA to messenger RNA. They act as central regulators of gene 

expression by interacting with promoter and enhancer elements, often in coordination with 

chromatin-modifying complexes. Beyond simply recognising DNA motifs, transcription factors 

can influence chromatin architecture by recruiting co-activators, co-repressors and chromatin 

remodelling enzymes (Weidemüller et al., 2021). 

In the context of breast cancer, several transcription factors play pivotal roles in defining the 

transcriptional landscape of hormone receptor-positive tumours. Oestrogen Receptor 1 (ESR1) is 

one of the most studied transcription factors in breast cancer and functions as a ligand-activated 

nuclear receptor. Upon binding oestrogen, ESR1 translocates to the nucleus and binds to 

oestrogen response elements in the genome, where it recruits co-regulators and chromatin 

remodelers that facilitate gene activation. It governs a wide range of cellular processes including 

proliferation, differentiation and survival, and is a key driver in the luminal subtype of breast 

cancer (Hua et al., 2018). 

FOXA1 is a pioneer transcription factor that can bind to condensed chromatin and facilitate the 

recruitment of other transcription factors such as ESR1. It plays a crucial role in remodelling the 

chromatin landscape and enabling hormone-dependent transcriptional activity. FOXA1 is 

essential for luminal lineage specification and its expression correlates with better prognosis in 

ER-positive breast cancers (Augello, Hickey and Knudsen, 2011). 

GATA3 is another critical luminal-specific transcription factor that acts both independently and 

in tandem with ESR1 and FOXA1. It helps maintain epithelial cell identity and regulates genes 

involved in differentiation and proliferation. GATA3 mutations are common in breast cancer and 

often affect its DNA-binding domain, altering its regulatory functions (Adomas et al., 2014). 

Together, these transcription factors orchestrate complex regulatory networks that are tightly 

linked to chromatin accessibility. Their binding sites are enriched in accessible regions of the 

genome and their activity is often reflected in changes to the surrounding histone modification 

landscape. By including their binding signals in predictive models, one can capture a 

 



 

 

 14 

 

mechanistically informative snapshot of the regulatory environment governing gene expression 

in breast cancer cells. 

 

Current Research on Chromatin Accessibility 

High-throughput techniques such as ATAC-seq and ChIP-seq have revolutionised the ability to 

interrogate chromatin accessibility and the epigenomic signatures underlying gene regulation 

(Park, 2009; Buenrostro et al., 2015). However, traditional methods of analysing such data often 

lack the scalability and predictive capacity required to infer regulatory patterns across the 

genome and in unseen biological contexts (Yan et al., 2020).  

The mapping of accessible regions across the genome using assays like ATAC-seq has 

significantly advanced our ability to identify functionally relevant genomic elements. However, 

while ATAC-seq and similar techniques provide a high-resolution readout of chromatin 

openness, they do not offer mechanistic insight into why certain regions are accessible (Zhang et 

al., 2008; McCarthy and O’Callaghan, 2014; Tarbell and Liu, 2019). To address this gap, 

researchers are increasingly turning to computational models to infer chromatin accessibility 

from underlying molecular features such as histone marks and transcription factor binding 

signals (Zhao et al., 2022).  

 

Mechanistic Modelling of Chromatin Accessibility in Breast Cancer - Objectives, State of the 
Art and Implications for Cancer Epigenomics 

Few models exist that rely solely on mechanistic epigenetic features to predict accessibility and 

to my knowledge, none have done so specifically in the context of breast cancer. This study 

addresses that gap by developing a neural network model to predict chromatin accessibility using 

only histone modification and transcription factor ChIP-seq signal data, without incorporating 

DNA sequence information. To ensure robustness and assess generalisability across the genome, 

a leave-one-chromosome-out (LOCO) validation strategy was employed. This approach held out 

chromosome 1 for testing while training on all others, thereby reducing the risk of data leakage 

and overfitting to local sequence contexts. Compared to traditional random-split methods, LOCO 

validation better simulates how models would perform on entirely unseen genomic regions, 

 



 

 

 15 

 

making it a more stringent and biologically relevant validation technique (Mbatchou et al., 

2021).  

In addition to the neural network, baseline models including Extra Trees Classifier and 

Histogram Gradient Boosting Classifier from the sklearn.ensemble package (Pedregosa et al., 

2011) were implemented to benchmark performance. A linear regression model was also 

included to confirm the significance of selected features.  

This work has several implications for cancer research. Firstly, it assesses whether chromatin 

accessibility can be effectively modelled from mechanistic data alone. Secondly, by identifying 

key histone marks that regulate accessibility, this approach contributes to our understanding of 

epigenetic dysregulation in breast cancer and highlights candidate features for further 

investigation. This research will also pave the way for future applications in other cancer types 

and cell lines, enabling comparative analyses of epigenomic landscapes across disease states. 

Ultimately, this study builds a foundation for mechanistic, non-sequence-based modelling of 

chromatin accessibility in cancer. It underscores the value of integrating epigenetic signals to 

decipher regulatory dynamics and provides a practical framework for future work aimed at 

linking accessibility to gene expression, targeted drug development and clinical phenotypes in 

tumour evolution. 

 

The Importance of Choosing the Correct ML Evaluation Metrics when Answering Biological 
Questions 

Class imbalance occurs when one class is represented far less than the other, in binary 

classification models. In genomic and epigenomic studies, class imbalance is common, for 

instance in this study, when open chromatin represents only a small fraction (~2%) of the entire 

genome. Under these conditions, traditional accuracy becomes misleading, as high scores can be 

achieved simply by predicting the dominant class (i.e. closed chromatin). Metrics such as 

precision, recall, F1-score, MCC and AUC-ROC are more informative. Precision assesses how 

many predicted positives are correct, while recall (or sensitivity) measures how many actual 

positives have been identified. The F1-score balances precision and recall and is commonly used 

in imbalanced binary classification tasks; however, it ignores true negatives and can overestimate 

performance in cases where false positives also carry weight, particularly when addressing 
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biological questions with potential clinical relevance (Chicco and Jurman, 2020; Rauschert et al., 

2020). 

The Matthews Correlation Coefficient (MCC) addresses these limitations by incorporating all 

four values of the confusion matrix (TP, TN, FP, FN), offering a balanced, single-number 

summary. Unlike F1 or AUC-ROC, MCC penalises disproportionate errors on either class, 

making it especially well-suited for cancer epigenetics, where both sensitivity and specificity are 

critical. A model predicting only the dominant class in a highly imbalanced dataset may show 

high accuracy but yield an MCC of zero, accurately reflecting its lack of predictive power 

(Chicco and Jurman, 2020; Newsham et al., 2024). The use of all metrics outlined ensures the 

neural network performs robustly across both classes, providing a stringent and interpretable 

assessment of model quality under biologically realistic imbalance. 

 

Materials and Methods 

Data Acquisition 

To construct the deep learning models to predict chromatin accessibility, the well-characterised 

breast cancer cell line, MCF-7 was used. To ensure high-quality data on chromatin accessibility, 

transcription factor binding and histone modifications, datasets from ENCODE were selected 

(Applications of ENCODE data to systematic analyses via data integration - ScienceDirect, 

2018). The chromatin accessibility data was obtained by using bulk ATAC-seq and downloaded 

from the ENCODE database as a BED file. The accession ID is ENCFF821OEF. The ChIP-seq 

profiles of histone modifications and transcription factors were also downloaded from ENCODE 

as bigWig files. A limitation of this study is that only a single ATAC-Seq peak file 

(ENCFF821OEF) was used, as no additional independent replicates were available on ENCODE. 

However, given the high-quality standards of ENCODE data processing, including rigorous peak 

calling and reproducibility checks, this is unlikely to significantly impact the reliability of the 

findings. All files were mapped to the GRCh38 genome. The annotation of all files is 

summarised in Supp. Table 1. All ChIP-Seq signal values were reported as p-values, representing 

the statistical significance of enrichment at each genomic position. ATAC-Seq peaks were 
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defined using a pseudoreplicated peak-calling approach, ensuring reproducibility across isogenic 

replicates. 

 

ATAC-Seq Data Processing and Visualisation 

The distribution of chromatin accessibility was visualised across the genome, ATAC-Seq peak 

density was plotted for each chromosome (chr) (chr1–chr22 and chrX). Peaks from the 

ATAC-Seq dataset were binned into genomic intervals, and density histograms were generated to 

assess the frequency and distribution of accessibility sites along the genome, Supp. Figure 1. 

This allowed for the identification of chromatin accessibility patterns and potential sequencing 

biases or coverage errors in peak distribution before model training. 

 

Assignment of Chromatin Accessible and Non-Accessible Regions 

To define chromatin accessibility regions, ATAC-Seq peaks were used to label genomic bins as 

open (1) or closed (0) chromatin. The human genome (GRCh38) was segmented into 

non-overlapping 1000 base pairs bins, covering all autosomes and chrX (excluding chrY due to 

the MCF-7 cell line’s female origin). Each bin was initially assigned a default closed chromatin 

(0) state, and bins overlapping ATAC-Seq peaks were labeled as open chromatin (1). This 

approach allowed for structured representation of chromatin accessibility across the genome 

while reducing the sparsity of peak-based methods. 

A bin size of 1000 base pairs was chosen as a balance between resolution and computational 

efficiency. This binning strategy ensures that chromatin accessibility is quantified at a 

biologically relevant scale, approximately corresponding to the size of regulatory elements such 

as enhancers and promoter regions. Following preprocessing, chromatin accessibility was 

quantified, yielding 143,817 open chromatin regions (1) and 2,661,272 closed chromatin regions 

(0), corresponding to ~5.13% overall chromatin accessibility. Previous studies have reported 

genome-wide accessibility estimates of ~2–3%, primarily in non-cancerous cell types (Klemm, 

Shipony and Greenleaf, 2019). However, the higher accessibility observed in this study is likely 

due to the cancerous nature of MCF-7 cells and binning at 1000 base pairs resolution, which may 

capture broader regulatory activity compared to base-pair-level analyses. 
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To ensure the biological accuracy of chromatin accessibility peak assignment, peaks were 

annotated using Hypergeometric Optimization of Motif EnRichment’s (HOMER) 

annotatePeaks.pl command, Supp. Figure 2. 

 

Assignment and Normalisation of Histone and Transcription Factor Signals to 1 Kilobase Bins 

To systematically assign both histone modification and transcription factor (transcription factor) 

binding signals to 1 kb genomic bins, ChIP-Seq, bigWig signal data were preprocessed and 

mapped using a standardised workflow. Signal data from six histone marks (H3K4me1, 

H3K4me3, H3K27ac, H3K27me3, H3K9me3, H3K36me3) and three transcription factors 

(ESR1, FOXA1, GATA3) were first converted from bigWig to bedGraph format using the 

bigWigToBedGraph command. These features were selected based on their established roles in 

chromatin regulation and transcriptional activity in breast cancer (Jin et al., 2020) 

The genomic bins and signal files were sorted by chromosome and genomic position to ensure 

accurate alignment. Using bedtools map, mean signal intensity for each feature was computed 

within each 1 kb bin by mapping the bedGraph files to the genomic bins. This process ensured 

that both histone modification and transcription factor signals were assigned to the correct 

genomic regions. 

Missing values, typically arising from regions with undetectable signals, were replaced with zero 

to maintain data consistency. Additionally, rows containing duplicate signals across multiple bins 

were removed to prevent data leakage during model training.  

 

Baseline Models for Benchmarking Chromatin Accessibility Prediction 

To establish benchmark performance for chromatin accessibility prediction, traditional 

ensemble-based, machine learning models, Extra Trees Classifier and Histogram Gradient 

Boosting were implemented from the sklearn.ensemble package (Pedregosa et al., 2011). 

Logistic Regression, specifically Ordinary Least Squares (OLS) regression, was used as a 

statistical framework for evaluating feature importance from p-values and regression 

coefficients.  
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Mechanistic Neural Network for Predicting Chromatin Accessibility 

Model Architecture 

A feedforward neural network was implemented to predict chromatin accessibility using histone 

modification and  transcription factor binding signal data. The input layer received a feature 

vector containing nine signal intensities (six histone marks and three transcription factor binding 

signals) per genomic bin. The first hidden layer comprised 64 neurons activated by the ReLU 

function, followed by a dropout layer (0.3 probability) to prevent overfitting. A second hidden 

layer with 32 ReLU-activated neurons was introduced, followed by another dropout layer to 

further regularise the model. The final output layer contained a single neuron with a sigmoid 

activation function, producing a probability score for chromatin accessibility, where a probability 

threshold of >0.7 denoted open chromatin (1). All hyperparameters were chosen following grid 

search hyperparameter tuning, Supp. Table 2. The model was compiled using binary 

cross-entropy loss and optimised with the Adaptive Moment Estimation (Adam) optimiser 

(Kingma and Ba, 2017), at a learning rate of 0.001. 

 

Training Strategy, Handling Class Imbalance and Leave-One-Chromosome-Out (LOCO) 
Validation  

To address class imbalance, the majority class (closed chromatin) was downsampled to five 

times the number of open chromatin regions before training. Features were normalised using 

Min-Max Scaling (0–1 range), with scaling parameters computed solely on the training set to 

prevent data leakage. The final model evaluation was conducted using a 

Leave-One-Chromosome-Out (LOCO) Validation framework. In this setup, chromosome 1 was 

excluded from training and used exclusively as the test set, ensuring that model predictions were 

evaluated on completely unseen genomic regions. This approach prevents the model from 

overfitting to chromosome-specific patterns and better reflects the real-world scenario in which 

regulatory features must be predicted in new, unobserved genomic contexts. 

During training, Stratified K-Fold Cross-Validation (K=5) was employed within the training set 

to ensure robust performance estimation. Early stopping was implemented, monitoring validation 

loss with a patience of five epochs, ensuring that training halted before overfitting occurred. 
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Class weights were adjusted to compensate for remaining class imbalance, assigning a 2x higher 

weight to open chromatin regions to improve sensitivity for the minority class. 

 

Results 

Exploratory Data Analysis to Assess Feature Relevance in Open and Closed Chromatin States 

The hypothesis for this study was that the features selected (six histone marks and three 

transcription factors) are associated with chromatin accessibility and would have adequate 

predictive capability to enable chromatin accessibility prediction. The hypothesis was validated 

by assessing the feature signals between open and closed chromatin states using a Mann Whitney 

U Test. To ensure unbiased evaluation, chromosome 1 was excluded from the analysis, as it was 

reserved for final model validation, preventing data leakage and ensuring that statistical 

comparisons were not influenced by the test set, Table 1. 

Table 1: Mann-Whitney U Test Statistics for Histone Modifications and Transcription Factor Signals in Open and 

Closed Chromatin 

Feature U-Statistic p-value Interpretation 

H3K4me1 2.89 × 10¹¹ 0 Strong association with open chromatin, corresponding with its role 

as an enhancer mark. 

H3K4me3 2.69 × 10¹¹ 0 Strong association with open chromatin, corresponding with its role 

as a promoter mark. 

H3K27ac 2.74 × 10¹¹ 0 Strong association with open chromatin, corresponding with its role 

in active enhancers and promoters. 

H3K27me3 1.07 × 10¹¹ 0 Strongly enriched in closed chromatin, confirming its role as a 

repressive histone mark. 

H3K9me3 1.22 × 10¹¹ 0 Consistently enriched in heterochromatin and repressed genomic 

regions. 
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H3K36me3 1.65 × 10¹¹ 2.75 x 10-90 Associated with transcriptional elongation regions, where the lower 

p-value highlights its mixed enrichment based on chromatin 

context.  

ESR1 2.40 × 10¹¹ 0 Strong enrichment in open chromatin, indicating active regulatory 

roles. 

FOXA1 2.35 × 10¹¹ 0 Enriched in open chromatin, supporting its function in enhancer 

accessibility. 

GATA3 2.31 × 10¹¹ 0 Strong enrichment in open chromatin, consistent with its role in 

gene regulation. 

 

To visualise the genome-wide distribution of histone modifications in open and closed chromatin 

regions, histone signals were normalised by chromosome length and densities were plotted for 

each chromatin state, Supp. Figure 3. Each histone mark showed distinct patterns, providing 

insight into histone enrichment patterns and their relevance for chromatin state classification. 

Additionally, to investigate the distribution of histone modification signals across different 

genomic annotations, histone signals were normalised by chromosome length and analysed 

within promoter, intergenic, exon, and intron regions, highlighting localisation patterns, Fig. 2.  

 

Evaluation Metrics 

All model performances were assessed using multiple evaluation metrics. The Area Under the 

Receiver Operating Characteristic Curve (AUC-ROC) measured discriminatory power, while the 

Matthews Correlation Coefficient (MCC) provided a robust assessment of classification quality 

in imbalanced datasets. Precision, recall, and F1-score were calculated to evaluate predictive 

performance. 

 

 

https://docs.google.com/document/d/1OOqU6X795Na5zpH-VCl1zlbOiJlCpk9z2uaEgyfcHiI/edit?pli=1&tab=t.pde8bhlxnjlm#heading=h.iuxow2ctfif3
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Figure 2: Boxplots depicting the distribution of normalised histone modification signals across genomic 
annotations. Each panel represents a distinct histone mark, with signals normalised by chromosome length. 
Promoters exhibit the highest enrichment of H3K4me3 and H3K27ac, while repressive marks H3K27me3 and 
H3K9me3 are more abundant in intergenic and intronic regions. Outliers have been removed for clarity. 

 

Baseline Models for Benchmarking Predictive Performance 

To assess the performance of the neural network, two ensemble-based baseline models, Extra 

Trees and Histogram Gradient Boosting from the sklearn.ensemble package were employed 

(Pedregosa et al., 2011). Performance was assessed using a leave-one-chromosome-out (LOCO) 

validation framework, with chromosome 1 held out as an unseen test set. This rigorous approach 

ensured that predictions were not biased by local genomic context and better simulated 

real-world application. 

Both models demonstrated strong predictive power, achieving AUC scores of 0.934 and 0.938 on 

the held-out chromosome, respectively. Both models also received scores of over 0.52 for their 

F1 and a Matthews Correlation Coefficient (MCC) scores, with Histogram Gradient Boosting 

slightly outperforming. Recall values were high for both classifiers (>0.78), while precision 

scores remained lower (<0.42), indicating a higher rate of false positives. All performance 

metrics can be viewed in Fig. 3. 

 

https://docs.google.com/document/d/1OOqU6X795Na5zpH-VCl1zlbOiJlCpk9z2uaEgyfcHiI/edit?pli=1&tab=t.pde8bhlxnjlm#heading=h.oj6a6moiibhe
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Mechanistic Neural Network Performance on Predicting Chromatin Accessibility 

The neural network trained on histone modification and transcription factor binding signal data 

successfully predicted chromatin accessibility in the MCF-7 breast cancer cell line. This model 

was trained and evaluated using the same input features and LOCO validation framework as the 

baseline models. The model architecture consisted of a fully connected neural network, 

illustrated in Fig. 4.  

The final model achieved high performance across all evaluation metrics, an AUC-ROC of 

0.927, an AUPRC of 0.657, an MCC score of 0.580 and Recall and Precision scores of 0.6077 

and 0.6048, respectively. These results demonstrate the model’s ability to sensitively and 

specifically identify open chromatin regions using only mechanistic epigenomic inputs. 

 

Histone Marks Are Sufficient Predictors of Accessibility 

To further identify the relative contribution of different feature types, two additional models were 

trained using only transcription factor signals or only histone modification signals. While both 

transcription factor-only and histone-only models used the same architecture and training 

procedure, their performance differed significantly. The transcription factor-only model showed 

reduced accuracy, with an MCC of 0.327 and an F1 score of just 0.319. In contrast, the 

histone-only model closely matched the full model in performance, achieving an MCC of 0.576 

and an F1 score of 0.601, Fig. 5. 

 

H3K4me1 Emerges as the Dominant Regulatory Feature 

Multiple interpretability approaches were applied to identify which features the model relied on 

most for decision-making. Permutation importance revealed that H3K4me1, a histone mark 

associated with enhancers, consistently contributed the most to model performance, highlighted 

by the largest drop in MCC Score following its removal, Fig. 6. These findings support the role 

of H3K4me1 in marking regions of accessible chromatin, particularly enhancers, which are 

crucial regulators of gene expression in hormone-responsive cancers like breast cancer. 
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SHAP Analysis for False Positive Predictions 

To assess feature contributions in incorrect predictions, SHAP summary analysis was performed 

on false positive cases for each input feature from the held-out chromosome 1 test set. Each dot 

in the plot represents a genomic bin, with SHAP values on the x-axis indicating the magnitude 

and direction of each feature’s influence on the model’s false positive predictions. The colour 

gradient (low (blue) to high (red)) reflects the original feature signal value. Features were ranked 

by their overall importance, as measured by the average absolute SHAP value, Fig. 7. 
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Figure 3: Performance Metrics and Feature Importance from Machine Learning and Linear Models on Held-out 
Chromosome 1. This figure summarises the performance of the Extra Trees and Histogram Gradient Boosting 
classifiers evaluated on chromosome 1 using a leave-one-chromosome-out (LOCO) validation strategy. Stratified 
K-Fold Cross-Validation (K=5) was applied during training to address class imbalance and ensure robust model 
evaluation. Both ensemble models achieved high AUC scores (>0.93) and strong recall (>0.78), with moderate MCC 
and F1 scores (>0.52), despite lower precision (<0.42). Additionally, an Ordinary Least Squares (OLS) linear 
regression model was used to estimate feature importance via regression coefficients. Feature contributions are 
visualised as effect sizes, with blue indicating positive association with open chromatin and red indicating 
association with closed chromatin. This analysis highlights the relative influence of each histone modification and 
transcription factor in predicting chromatin accessibility. 
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Figure 4: Neural network architecture for predicting chromatin accessibility. The model is a fully connected 
feedforward neural network. The input layer receives nine features per genomic bin (six histone marks and three 
transcription factor signals). This is followed by two hidden layers with 64 and 32 neurons, respectively, each using 
ReLU activation functions and dropout layers (dropout rate = 0.3) to reduce overfitting. The output layer consists of 
a single neuron with a sigmoid activation function, generating a probability score for chromatin accessibility. 
Hyperparamaters were determined by grid search hyperparameter tuning (see Supp. Table 2). The model was trained 
with binary cross-entropy loss and optimised using the Adam optimiser at a learning rate of 0.001. 
 

 

 

 
Figure 5: Comparative Performance of Histone-only and Transcription Factor-only Models in Predicting 
Chromatin Accessibility. This figure compares the performance of two models trained separately using either 
histone modification signals or transcription factor binding signals to predict chromatin accessibility. Both models 
used the same neural network architecture and training strategy as the full model. The histone-only model 
demonstrated strong predictive performance, closely matching the full feature set, with a Matthews Correlation 
Coefficient (MCC) of 0.576 and an F1 score of 0.601. In contrast, the transcription factor-only model showed 
reduced predictive power, with an MCC score of 0.327 and an F1 score of 0.319. These results highlight the greater 
standalone predictive value of histone modification signals in determining chromatin state. 
 

 

https://docs.google.com/document/d/1OOqU6X795Na5zpH-VCl1zlbOiJlCpk9z2uaEgyfcHiI/edit?pli=1&tab=t.pde8bhlxnjlm#heading=h.39upki384sl2
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Figure 6: Permutation Importance of Epigenetic Features Based on MCC Score. This figure shows the 
permutation importance of each input feature, measured by the change in Matthews Correlation Coefficient (MCC) 
when the feature values are randomly shuffled. A greater drop in MCC indicates higher importance. H3K4me1 
exhibited the largest decrease in MCC score, suggesting it played the most critical role in model predictions. Other 
features, including H3K27ac and H3K4me3, also showed moderate contributions. This analysis highlights the 
relative impact of individual histone modifications and transcription factor signals in predicting chromatin 
accessibility. 
 

 
Figure 7: SHAP Summary Plot of Feature Contributions for False Positive Predictions. This plot displays 
SHAP values for all input features derived from false positive predictions on the held-out chromosome 1 test set. 
Each point represents a single 1 kb genomic bin where the model predicted open chromatin incorrectly. The x-axis 
indicates the SHAP value, which quantifies the impact of each feature on the model’s output for that instance. The 
y-axis lists the features, including histone modification signals and transcription factor binding signals. Points are 
coloured by the original feature value, with blue representing low values and red representing high values. Features 
are ordered by their mean absolute SHAP value, indicating their relative importance in driving misclassification.
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Discussion 

H3K4me1 as a Distinctive Chromatin Accessibility Predictor in Breast Cancer 

Early and recent studies have shown that chromatin accessibility can be accurately predicted 

using epigenetic features like histone modifications and transcription factor binding, often 

without relying on DNA sequence. A pioneering analysis by (Cui et al., 2013) used support 

vector regression models on ENCODE data to quantify how histone marks and transcription 

factor binding correlate with chromatin “openness” (DNase hypersensitivity). They found that 

these features are highly predictive of accessibility and largely redundant, in fact, a small subset 

of histone marks and transcription factors could achieve very high predictive power​. This 

foreshadowed later machine learning approaches indicating that a core group of histone 

modifications largely determine whether chromatin is accessible in a given cell context. 

More recent work has leveraged deep learning for this task. (Zhao et al., 2022) built a two-layer 

model integrating DNA sequence, transcription factor ChIP-seq binding, transcription factor 

motifs and histone modification ChIP-seq signals to predict ATAC-seq accessibility in the 

HepG2 and GM12878 human cell lines. Their results showed that DNA sequence alone has 

limited predictive power (AUC ≈0.6), whereas models using histone marks or transcription 

factor binding data each achieved high accuracy (AUC ≈0.8–0.84) in classifying open vs closed 

chromatin.  

Notably, combining histone modifications and transcription factor features did not greatly 

improve accuracy over using either alone, indicating these features carry overlapping 

information. This was also seen in this study where the OLS regression analysis had a condition 

number of 12500, which might indicate that there is strong multicollinearity between features. 

This was further validated with a Spearman correlation matrix of all features, Supp. Figure 4. 

(Zhao et al., 2022) identified five core histone modifications (H2AFZ, H3K4me2, H3K27ac, 

H3K9ac and H3K4me3) that explain most of the accessibility signals across both cell types. This 

aligns with the earlier finding by (Cui et al., 2013), that only a small number of chromatin 

features are needed for robust predictions​. In other words, active histone marks (like H3K4me3 

or H3K27ac at promoters) and the binding of key transcription factors tend to co-occur at open 

chromatin, making either data type a sufficient proxy for predicting accessibility.  
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However, unlike in this study, (Zhao et al., 2022)’s results show H3K4me1 as a poor predictor of 

chromatin accessibility, achieving a relative importance score of less than ten, which is five times 

smaller than the strongest predictive features in HepG2 and GM12878 (H2A.Z1 and H3K4me2, 

respectively). In (Cui et al., 2013)’s study H3K4me1 received a prediction power score of ≈0.4 

compared to the strongest feature, H3K4me2, with a score of ≈0.7. In this study, however, 

H3K4me1 was the most predictive feature with its removal causing the largest drop in MCC 

score (see Fig. 6). While these findings suggest that H3K4me1 may serve as a distinctive 

predictor of chromatin accessibility in breast cancer, definitive conclusions cannot be drawn 

without evaluating additional features such as H3K4me2 and H2A.Z1.  

These studies illustrate a trend: by feeding epigenetic input features into machine learning 

models, one can achieve highly accurate predictions of ATAC-seq and DNase-seq peaks, often 

exceeding the accuracy of DNA-sequence-based models. Importantly, such models also provide 

biological interpretability, highlighting which histone marks are most influential in opening 

chromatin, thus, bridging predictive performance with mechanistic insight. 

 

Therapeutic Targeting of H3K4me1 and Its Writers in Cancer 

KMT2C and KMT2D 

Histone H3 lysine 4 monomethylation (H3K4me1) is a chromatin mark typically enriched at 

gene enhancers and “poised” regulatory regions. It is deposited primarily by the 

methyltransferases MLL3 and MLL4 (also known as KMT2C and KMT2D) as part of the 

COMPASS family complexes. Dysregulation of these “writers” of H3K4me1 has been 

implicated in cancer, making them attractive targets for precision therapy. However, direct 

inhibitors of MLL3/4 are not yet available clinically​ (Yao et al., 2024). Designing 

small-molecule inhibitors for the SET domain of KMT2D is an active area of research. One 

study reported virtual screening hits that bind the KMT2D catalytic domain, but with only 

micromolar affinity​ (Yu et al., 2020).  

To date, no specific MLL3/4 inhibitor has reached the market, reflecting both the complexity of 

these large enzymes and the fact that in many cancers they function as tumor suppressors rather 

than oncogenic drivers​ (Yao et al., 2024). For example, KMT2C (MLL3) is frequently mutated 

or lost in breast cancers and other tumors, and its loss is associated with poor prognosis and 

 

https://docs.google.com/document/d/1OOqU6X795Na5zpH-VCl1zlbOiJlCpk9z2uaEgyfcHiI/edit?pli=1&tab=t.pde8bhlxnjlm#heading=h.xkg2drvbv5pl
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therapy resistance​ (Liu et al., 2021; Batalini et al., 2023). In such cases it would be ill-advised to 

inhibit MLL3 further as the loss of H3K4me1 may contribute to increased tumour progression. 

By contrast, KMT2D (MLL4) has recently been shown to act as a context-dependent oncogenic 

co-factor in certain settings. (Yao et al., 2024) also identified that in triple-negative breast cancer 

(TNBC), KMT2D is often overexpressed and drives enhancer activation. It was found to 

promote H3K4me1 deposition at enhancers of oncogenes like MYC, thereby facilitating tumour 

growth and metastasis​. Additionally, the study also identified YBX1 as a novel “reader” protein 

that recognizes H3K4me1 marks deposited by KMT2D, hence, the KMT2D–H3K4me1–YBX1 

axis was shown to epigenetically activate MYC and other pro-tumour genes in TNBC​. Notably, 

high KMT2D and YBX1 levels correlated with poorer survival in breast cancer patients​ and 

disrupting this axis significantly impeded TNBC cell growth and metastasis in preclinical 

models​. These findings suggest that inhibiting the H3K4me1 writer (KMT2D) or its reader 

(YBX1) could be a viable therapeutic strategy in aggressive, enhancer-driven breast cancers.  

 

LSD1/KDM1A 

Another way to target H3K4me1 levels is to inhibit the enzymes that remove this mark (i.e. 

histone demethylases). The LSD1/KDM1A enzyme specifically demethylates H3K4me1 and 

H3K4me2 (it can convert H3K4me1 to unmethylated lysine)​ (Fang, Liao and Yu, 2019). 

Elevated LSD1 in basal tumors correlates with downregulation of BRCA1 and was associated 

with increased sensitivity to PARP inhibitors (Nagasawa et al., 2015). This suggests 

LSD1-overexpressing cancers have a “BRCA-reducing” phenotype that could be therapeutically 

exploited. Several LSD1 inhibitors are now in clinical trials or advanced development, including 

ORY-1001 (iadademstat), GSK-2879552, IMG-7289, INCB059872, and CC-90011 (Fang, Liao 

and Yu, 2019). These compounds were initially tested in AML (acute myeloid leukemia) and 

SCLC (small-cell lung cancer), where LSD1 is critical for maintaining the undifferentiated, 

stem-like state of the cancer cells​. By inhibiting LSD1’s demethylase activity, such drugs 

increase H3K4me1/2 levels at differentiation genes, thereby reactivating suppressed gene 

programs and inhibiting tumor growth. Given LSD1’s role in breast cancer progression and 
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therapy resistance, there is interest in evaluating these inhibitors in breast cancer as well​ (Verigos 

et al., 2019; Yang et al., 2022). 

  

LSD2/KDM1B 

Another H3K4me1/2 demethylase, LSD2/KDM1B, is less studied but has been reported to 

demethylate enhancer marks and thereby silence genes like TP53; overactive LSD2 can promote 

cancer cell proliferation by epigenetically repressing p53 and other targets​ (Wang, Ma and Yu, 

2023). While no LSD2-specific inhibitors are in clinics, the success of LSD1 programs suggests 

that targeting H3K4 methylation dynamics, either by inhibiting writers or erasers, is a promising 

approach in oncology. 

 

Implications for Breast Cancer Prognosis and Model Interpretability 

Epigenetic Breast Cancer Stratification for Precision Oncology 

These advances carry important implications for breast cancer prognosis and for the 

interpretability of chromatin-based machine learning models. First, the status of 

H3K4me1-associated regulators is emerging as a biomarker of prognosis in breast cancer. For 

instance, high LSD1 expression (indicative of aggressive biology with low H3K4me1 on certain 

gene enhancers/promoters) is associated with significantly worse survival in basal-like breast 

cancer​ (Nagasawa et al., 2015). Conversely, loss-of-function mutations in MLL3 (which 

decrease H3K4me1) are linked to endocrine therapy resistance and poor outcome in ER-positive 

breast cancers​ (Liu et al., 2021; Batalini et al., 2023). As noted previously, overexpression of 

MLL4 and its H3K4me1 mark correlates with poor prognosis in TNBC (Yao et al., 2024). This 

opens discussion to investigate such relationships in oestrogen-amplified breast cancers. 

These correlations suggest that measuring chromatin marks or the expression of their 

writers/erasers could refine risk stratification. For example, a high H3K4me1 enhancer signature 

might identify tumors reliant on active enhancers (prone to metastasis), whereas low H3K4me1 

in a normally MLL3-dependent context might flag a more therapy-resistant tumor. Such 

knowledge can inform treatment decisions, for example, considering LSD1 inhibitor trials for 
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patients with LSD1-overexpressing tumors, or PARP inhibitors for those with the LSD1–low 

BRCA1 axis​. 

 

Mechanistic Evaluation of Breast Cancer Opens Doors to New Research Avenues 

Secondly, using epigenetic features in predictive models enhances model interpretability, which 

can yield biological insights. This neural network in this study and in (Zhao et al., 2022)’s not 

only predicts accessibility but also highlights which features are driving the prediction. If a 

model learns that H3K4me1 and H3K27ac are the top predictors of open chromatin in a breast 

cancer cell line, this reinforces the concept that active enhancer marks underlie the accessible 

chromatin landscape of that tumour. In the future this could lead to the discovery of a shared, 

fundamental epigenetic code for open chromatin. Identifying these key marks can direct 

researchers to the master regulators of the cell’s epigenome, which could further influence 

targeted drug development, as discussed above.  

For example, if H3K4me1 is consistently important in a model, one might investigate the 

upstream MLL3/4 complexes or associated co-factors (like menin or WDR5) in that context. The 

redundancy observed between transcription factor bindings and histone marks in the model is 

also informative; it suggests that open chromatin is a concerted state maintained by both 

transcription factors and histone modifications together. For therapy, this means clinicians could 

either target the transcription factor (perhaps with a small-molecule inhibitor or degrader) or the 

chromatin modifier (an epigenetic drug) to disrupt a given accessible region. In the TNBC 

example, one could aim at YBX1 (the transcription factor reader) or KMT2D (the writer) to 

collapse an oncogenic enhancer​.  

From a systems biology view, chromatin-feature-based models act as feature selectors, pointing 

to which epigenetic signals are most critical. This aids interpretability and cross validation with 

experiments. A model’s top features can be validated in the lab, such as by CRISPR-editing a 

histone modifier or treating cells with an epigenetic inhibitor to see if chromatin accessibility and 

gene expression change as predicted. 

In summary, a growing body of work demonstrates that chromatin accessibility can be accurately 

predicted from epigenetic profiles​. These models have identified key histone marks (like 
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H3K4me1) as fundamental determinants of open chromatin, providing mechanistic insights that 

complement sequence-based predictions.  

In parallel, pharmacological targeting of the H3K4me1 pathway is being pursued in oncology. 

While direct MLL3/4 inhibitors remain under development, inhibitors of associated factors 

(menin, WDR5) and demethylases (LSD1) are showing promise in clinical trials​. The 

convergence of these research avenues suggests an exciting precision oncology paradigm. In the 

future, clinicians could use chromatin-based models to identify tumor-specific epigenetic 

vulnerabilities, and then apply epigenetic drugs to selectively target the aberrant chromatin states 

that drive a given patient’s cancer. In breast cancer, this means the prospect of tailoring 

treatments that intervene in enhancer activation programs or chromatin modifications (such as 

aberrant H3K4me1 patterns), potentially improving outcomes for subtypes with poor prognosis 

and offering new strategies to combat therapy resistance. 

 

The Implementation of RNA-Seq to Enable Multi-omic Breast Cancer Analyses 

Incorporating RNA-seq data into chromatin accessibility prediction frameworks offers a critical 

next step in linking regulatory potential with transcriptional output. While histone modifications 

and transcription factor binding profiles provide a mechanistic basis for predicting open 

chromatin, RNA-seq captures the functional consequence of these regulatory events. By 

integrating transcriptomic data, future models could go beyond binary chromatin states to predict 

which accessible regions are actively contributing to transcription. For example, enhancers 

marked by H3K4me1 that also correlate with upregulated nearby genes would offer strong 

evidence of functional activation, allowing models to better prioritise biologically meaningful 

regulatory elements. This could also assist in distinguishing poised enhancers from active ones in 

breast cancer subtypes, refining the interpretability of models and improving precision in 

identifying therapeutic targets. 

Additionally, RNA-seq integration would enable the exploration of enhancer–promoter 

interactions and regulatory network dynamics specific to cancer phenotypes. This study 

highlighted H3K4me1 as a key predictive marker, but does not capture downstream expression 

changes that drive tumour behaviour. By connecting accessible chromatin regions to their gene 

targets via co-expression or enhancer–promoter proximity frameworks by using Hi-C-informed 
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assignments, one could construct interpretable gene regulatory networks in breast cancer. This 

could also help identify transcriptional programmes driven by specific histone-modifying 

enzymes (such as KMT2D or LSD1), opening avenues for stratifying patients based on 

expression signatures linked to epigenetic vulnerabilities. In doing so, RNA-seq–guided models 

could support the identification of synthetic lethal interactions or epigenetic–transcriptional 

dependencies that are targetable in precision oncology. 

 

Predicting Future States of Chromatin Accessibility - Chromatin Velocity 

While this model’s prediction of chromatin accessibility from histone marks and transcription 

factor binding is significantly biologically relevant, it largely relies on static snapshots of the 

epigenome. However, tumour evolution is inherently dynamic, and recent innovations in RNA 

velocity, which estimates the future transcriptional state of individual cells by analysing the 

ratios of spliced and unspliced RNA, offers an untapped opportunity to integrate temporal 

dynamics into chromatin modelling (Tang et al., 2023). The study leveraged RNA velocity 

within their comboSC pipeline to inform drug prioritisation by inferring the likely trajectories of 

immune and tumour cells, enabling personalised therapeutic optimisation at single-cell 

resolution​. 

Extending this framework, an exploratory direction would involve adapting RNA velocity to 

develop a concept of “chromatin velocity”, an extended computational model that not only infers 

current transcriptomic dynamics but also anticipates future transcriptional states based on 

chromatin accessibility or histone modification patterns. In breast cancer, this could identify 

enhancer reprogramming events before they manifest, potentially forecasting epigenomic 

vulnerabilities in aggressive or therapy-resistant subpopulations. Such predictions could be 

integrated with histone modification-based models to dynamically prioritise epigenetic targets 

like H3K4me1-modifying enzymes, thereby enabling pre-emptive therapeutic interventions 

before phenotypic transitions occur, advancing the goals of precision oncology by targeting 

chromatin state transitions unique to malignant cells. 
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Conclusion 

This study demonstrates the feasibility and biological relevance of predicting chromatin 

accessibility using only histone modification and transcription factor binding signals in the 

MCF-7 breast cancer cell line. By developing and benchmarking a mechanistic neural network 

against baseline models, it was shown that histone features, particularly H3K4me1, are sufficient 

for accurate chromatin state prediction, with performance comparable or superior to models that 

incorporate more expansive inputs. Importantly, the neural network model outperformed existing 

frameworks despite using fewer features and no DNA sequence data, thereby offering a scalable, 

interpretable alternative for inferring regulatory landscapes from ChIP-seq profiles alone. 

These findings support a precision oncology paradigm in which chromatin-based models are 

used not only for prediction, but for identifying epigenetic dependencies specific to malignant 

states. The prominence of H3K4me1 as a predictive feature, contrasted with its lower importance 

in other cell types, suggests that enhancer priming mechanisms may play a unique role in 

oestrogen receptor-positive breast cancer. Furthermore, mechanistic insights derived from this 

modelling approach provide a foundation for therapeutic intervention.  

Future directions include expanding classification to additional chromatin states (e.g. poised or 

permissive regions), integrating transcriptomic data from RNA-seq to link accessibility with 

gene expression, and validating findings in other breast cancer cell lines. An exploratory avenue 

also lies in adapting RNA velocity frameworks to derive “chromatin velocity” measures, 

predicting future accessibility dynamics in response to tumour evolution. By moving towards 

temporally-aware, multi-omic modelling, there is substantial potential to pre-empt regulatory 

shifts that underlie resistance and metastasis. Ultimately, this work highlights how AI models 

trained on interpretable epigenetic features can advance our understanding of chromatin 

regulation in cancer, refine prognostic tools, and lay the groundwork for selectively targeting 

epigenomic vulnerabilities in breast cancer. 
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Appendices 

Supplementary Table 1 

Dataset summary. The ENCODE accession number, experimental target, file format, replicates, 

genome assembly and data processing type are provided in the table below. 

Supplementary Table 1: Summary of ATAC-Seq and Histone ChIP-Seq Datasets Used in This Study 

Experimental 

Target 

File Accession 

ID 

Histone 

Mark / 

Assay Type 

File 

Format 

Replicates Genome 

Assembly 

Data Processing 

ATAC-Seq ENCFF821OEF Chromatin 

Accessibility 

BED 

(gzipped) 

Isogenic Rep 

1, 2 

GRCh38 Pseudoreplicated 

Peaks 

ChIP-Seq ENCFF025QZH H3K27me3 bigWig Isogenic Rep 

1, 2 

GRCh38 Signal p-value 

output 

ChIP-Seq ENCFF372GMC H3K4me1 bigWig Isogenic Rep 

1, 2 

GRCh38 Signal p-value 

output 

ChIP-Seq ENCFF138YNG H3K27ac bigWig Isogenic Rep 

1, 2 

GRCh38 Signal p-value 

output 

ChIP-Seq ENCFF163MXP H3K4me3 bigWig Isogenic Rep 

1, 2 

GRCh38 Signal p-value 

output 

ChIP-Seq ENCFF910BRP H3K36me3 bigWig Isogenic Rep 

1, 2 

GRCh38 Signal p-value 

output 

ChIP-Seq ENCFF481DZL H3K9me3 bigWig Isogenic Rep 

1, 2 

GRCh38 Signal p-value 

output 

Chromatin State ENCFF506GEX ChromHMM 

Annotations 

BED 

(gzipped) 

Isogenic Rep 

1, 2 

GRCh38 Semi-automated 

genome 

annotation 
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Supplementary Figure 1 

 

 
Supplementary Figure 1: ATAC-Seq Peak Density Across All Chromosomes. Histograms displaying the 
distribution of ATAC-Seq peak density across all chromosomes (chr1–chr22 and chrX) in the MCF-7 cell line. Peaks 
were identified using a pseudoreplicated peak-calling approach, ensuring reproducibility across isogenic replicates. 
The x-axis represents the genomic position in base pairs, while the y-axis represents the frequency of peaks within 
100 evenly spaced genomic bins. Variability in peak density across chromosomes reflects differences in chromatin 
accessibility, with certain regions exhibiting higher regulatory activity. Peaks on chrX provide insights into the 
regulation of sex chromosome-associated genes in this breast cancer-derived cell line.  
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Supplementary Figure 2 

HOMER is a widely used software suite designed for the identification and annotation of 

regulatory elements in genomic data, including promoters, enhancers, and other functional 

regions (Heinz et al., 2010). Genomic bins from the chromatin accessibility dataset were mapped 

to functional genomic annotations based on HOMER's precomputed reference databases. Each 

bin was classified into one of four genomic categories: Promoter, Intergenic, Exon, or Intron, 

based on overlap with annotated peaks. A bin was assigned to a category if its genomic 

coordinates overlapped with a corresponding HOMER annotation. 

 

  
Supplementary Figure 2: Genomic Region Distribution (HOMER) of Peaks. Bar plot displaying the proportion 
of ATAC-seq peaks annotated in different genomic regions using HOMER. The majority of peaks are located in 
introns and intergenic regions, with a smaller proportion in promoters and exons, highlighting the widespread nature 
of chromatin accessibility beyond promoter regions. 
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Supplementary Figure 3 

 
Supplementary Figure 3: Genome-wide distribution of histone modifications in open and closed chromatin. 
Histograms display the normalised signal intensity of six histone modifications across the genome, separated by 
chromatin accessibility state. (Top) Histone signal densities in open chromatin (blue), showing enrichment of active 
marks such as H3K4me3 and H3K27ac. (Bottom) Histone signal densities in closed chromatin (red), where 
repressive marks such as H3K9me3 are more prominent. The x-axis represents the normalised genomic position, 
adjusting for chromosome length, while the y-axis denotes the normalised histone signal density. These plots 
highlight distinct histone modification patterns associated with chromatin accessibility states. 
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Supplementary Table 2 

Grid Search Results Across Class Weights, Thresholds and Downsampling Ratios. The findings 

support the utility of histone modifications and transcription factor binding signals as predictive 

features for chromatin accessibility modeling. To ensure unbiased evaluation, chromosome 1 was 

excluded from the analysis, as it was reserved for final model validation, preventing data leakage 

and ensuring that statistical comparisons were not influenced by the test set. 

Supplementary Table 2: Grid Search Hyperparameter Tuning of LOCO Validation Model 

Class Weights Threshold Downsampling 

of Majority 

Class (0) 

AUC AUPRC Precision Recall MCC 

{0: 1, 1: 2} 0.5 15 0.927101 0.663065 0.651528 0.571450 0.587534 

{0: 1, 1: 2} 0.7 10 0.926923 0.659017 0.739667 0.490572 0.583029 

{0: 1, 1: 2} 0.7 5 0.926472 0.654996 0.604997 0.603256 0.579429 

{0: 1, 1: 16.00} 0.9 10 0.925037 0.652168 0.624370 0.582052 0.578955 

{0: 1, 1: 16.00} 0.9 15 0.923326 0.646632 0.639239 0.564786 0.577575 

{0: 1, 1: 2} 0.5 10 0.926072 0.656677 0.570452 0.631882 0.574069 

{0: 1, 1: 2} 0.7 15 0.927039 0.663149 0.810857 0.427565 0.571843 

{0: 1, 1: 2} 0.9 5 0.926639 0.656444 0.808316 0.415146 0.562221 

{0: 1, 1: 2} 0.3 15 0.927548 0.660471 0.508380 0.682242 0.559354 

{0: 1, 1: 16.00} 0.9 5 0.924519 0.648529 0.448371 0.716850 0.533427 

{0: 1, 1: 2} 0.3 10 0.926711 0.661218 0.436271 0.737448 0.533039 

{0: 1, 1: 2} 0.5 5 0.925032 0.651616 0.426799 0.737372 0.526013 
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{0: 1, 1: 16.00} 0.7 15 0.922552 0.642624 0.401362 0.749867 0.511550 

{0: 1, 1: 2} 0.9 10 0.929306 0.667085 0.924780 0.278379 0.494132 

{0: 1, 1: 2} 0.9 15 0.922231 0.644067 0.898820 0.282544 0.490011 

{0: 1, 1: 16.00} 0.7 10 0.923884 0.650270 0.336945 0.803029 0.477306 

{0: 1, 1: 2} 0.3 5 0.926406 0.654101 0.310036 0.825369 0.460066 

{0: 1, 1: 16.00} 0.5 15 0.926075 0.653978 0.274070 0.848921 0.431814 

{0: 1, 1: 16.00} 0.7 5 0.925609 0.651542 0.261812 0.856872 0.421261 

{0: 1, 1: 16.00} 0.5 10 0.926664 0.656907 0.234348 0.882393 0.397914 

{0: 1, 1: 16.00} 0.3 15 0.925068 0.652029 0.217604 0.889284 0.379644 

{0: 1, 1: 16.00} 0.5 5 0.923603 0.644035 0.215452 0.888451 0.376728 

{0: 1, 1: 16.00} 0.3 10 0.925818 0.650988 0.191236 0.906172 0.349859 

{0: 1, 1: 16.00} 0.3 5 0.922798 0.641753 0.173266 0.914881 0.326493 
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Supplementary Figure 4 

Spearman Correlation Matrix of Histone Modifications and Transcription Factor Binding 

Signals. 

 
Supplementary Figure 4: Spearman Correlation Matrix of Histone Modifications and Transcription Factor 
Binding Signals. This heatmap shows the pairwise Spearman correlation coefficients between six histone 
modification signals and three transcription factor binding signals used as input features for chromatin accessibility 
prediction. Moderate positive correlations were observed between H3K4me1, H3K4me3, and H3K27ac, three marks 
associated with active regulatory elements. Transcription factors ESR1, FOXA1, and GATA3 also showed modest 
correlation with these active histone marks, particularly H3K4me1 and H3K27ac. These patterns indicate potential 
redundancy in predictive features, aligning with prior observations that combining histone marks and transcription 
factor signals yields minimal performance gain over using histone modifications alone (see Fig. 5). This redundancy 
was further evidenced by a high condition number (12500) in the Ordinary Least Squares (OLS) regression analysis, 
further compounding multicollinearity among features. Such overlap supports the notion that a core subset of 
chromatin features is sufficient to capture accessibility patterns, consistent with findings from (Cui et al., 2013) and 
(Zhao et al., 2022). 
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