breakthrough
cancer— -
research

BioSLATE: Biomarker Selection and Synthetic Lethality Analysis for
Therapeutic Exploration in HGSOC

Student Name: Faith Ogundimu
Grant Number: SUMSCHO037
Supervisor: Associate Professor Colm Ryan

Department of Medicine



Table of Contents

Table Of CONEENLS.....ucuueneiiieireiieiiestenteseessiseeseessesssesnessesssessasssessasssssssesssessasssessssssssssssssessasssess 2
LiSt 0f ADDIevVIationS......cuciieiieniinrneninininneieesneneesnesnesncseessesssssssssessssssesssesssssasssssssasssssssessassane 4
Scientific Abstract 6
Introduction 7
Clinical Challenges of High-Grade Serous Ovarian Cancer...........c..ceceveererieneenieesieneenennn. 7
Synthetic Lethality: A Precision Oncology Approach...........cccceeveeniiiiiieniieiiienieeeeeeeeeee. 7
Integrative Framework for Biomarker Discovery and Synthetic Lethal Screening.................. 8
Materials and Methods 9
Data ACGUISTEION. ....eeeiiiieiieeiitetie ettt ettt et ee et e et e s teebeesabeeabeesteeesbeessbeeaseesaeeenseesssesnseenseasnseennns 9
Candidate Biomarker Filtering in TCGA TUMOULS.......cceereriirienerienienientenieeieeee e 10
CNA-Protein Integration and Statistical Modelling..........cccceeeeveriiniineniieniineeicneeneeeeeen 10
Validation of CNA—Protein Biomarkers in Ovarian Cancer Cell Lines.........c.ccccceevvererncnnnene 10
Regression-Based Synthetic Lethality Screening in HGSOC Cell Lines..........cccccecverveneennene 11
Figure 1: Workflow for Synthetic Lethality Discovery in Amplified HGSOC
GBIIES. .ottt ettt et h e et e b e et b e e bbbt et esht e e bt e saeeebeen 12
Al-Based Synthetic Lethality Literature Mining...........cccoeevveeevivieniiieeniiieeniie e eeeeeevee e 13
Agent Design and PUIPOSE.......ccueieiiiiiiiiieiieeeie ettt e e e s 13
Input Parameters and Execution Modes..............covuiiiiiiiiiiniiiiiiinieeeieeeeeeeeeee e 13
Multi-Agent ATCRITECTUTE. ......ccuiiieiiie ettt ettt e e e e eeabeeeaaeeenneeens 13
Output and Scoring FramewWorK..........cccuvieiiiiiiiiieiieeiecceeeeee e 14
Software and TOOIS.......coouiiiiii e 14
Figure 2: Architecture of the OncoSynth Multi-Agent Literature Mining System...
15
Protein—Protein Interaction Validation of Synthetic Lethal Pairs (BioGRID)......................... 16
Network and Pathway Analysis of Potent Synthetic Lethal Targets (STRING & g:Profiler). 16
Benchmarking Synthetic Lethal Pairs Against Public Databases............ccoccvverveniinennicnnenne. 17
Clinical and Genomic Data PrOCESSING.......c..coviruieriiriiniiiienienieeieetenie et 17
SUrVIVAl MOEIING. .....cviiiiiiiiiiiieet ettt et 18
Synthetic Lethal Target Prioritisation and Drug Tractability Analysis.......c..cceceeverviervenennnene 18
Drug-Target Mapping and GDSC INtegration.........c..cecevvereerieniereenienieneeieeeene e 18
Copy Number-Drug Sensitivity Correlation ANalysis.........cocceveevuirieneriieneenennienieneeieneene 18
RESUILS.ccuuviiiiriiiiniiitiinitiinitiinitienssticsssticsssnesssstesssssesssssesssssesssssessssssssssesssssesssssessssssssssnssssssessssnes 19
Identification of CNA—Protein Associations in TCGA HGSOC.........cccccoviiviiieiiiniiiiiee, 19
Cell Line Support for Amplified Biomarkers.............cooceeiiiiiiiiiiiiiiieeeeeeeeee, 19
Table 1: Sequential Filtering Steps for TCGA—-DepMap Integration and Candidate
Biomarker SeIeCtiON. .........cocuiiiiriiiiiiieiee e 20
Identification of Potent Synthetic Lethal Interactions............ccccceevieviienienieeniiecie e 20

Figure 3: Regression-Based Synthetic Lethality Screening in HGSOC Cell Lines..



21

Limited Direct Interactions but Widespread Network Overlap...........ccoceevveniiiiinniiiienins 22
STRING Support and Pathway Enrichment of SL Hits..........ccccoviriiniiiiniiniiniceeiceeeee, 22
Figure 4: Protein-Protein Interaction Network Analysis Validates Synthetic Lethal
Gene Pair RelationShips.........coouiieiiiiiiiiiieiiece et 23
Predominantly Unestablished Synthetic Lethal Interactions............c.ccccveevvierieeniienieenieennennn, 23
Clinical Cohort CharaCteriStICS. .. ...evuteuieieriierieriestiete ettt ettt ettt e e enbesneeneeenee 24
CoX Regression OULCOMES......cc.eeevieriieiiieiieeieeiteeeteeteesteesseesaeesseessseesseessseesseesssessseesssessseens 24
Kaplan—MeEier ANALYSES.......cccuieiiiiiiieriiieiieeieeteeeteeteesiteeteesteeereessaeesbeeseessseessseesseenseessseenses 24
010001 0 ) 2RSS 24
Figure 5: Biomarker Survival Analysis In High-Grade Serous Ovarian Carcinoma.
25
Therapeutic Tractability Landscape of Synthetic Lethal Targets..........ccccooeevervienienencicnnenne. 26
Limited Drug Availability Constrains Pharmacological Validation............cccccoveeveriineennene. 26
Proof-of-Concept Validation of CHD7-CDK4 Synthetic Lethality.........cccccocveeieiiniencnnennen. 26
Figure 6: Translational Validation and Tractability of Synthetic Lethal
BIOMATKEIS. ..c..eeiieiiieiieeeee et et e 27
DISCUSSION..cciiueiiticstiiiteisteniticsaiisaecsseesansssessssssssessssssssessssssssessssssssesssassssssssassssesssassssssssassssesssases 28
Copy Number Alterations as a Distinct Genomic Lens for Synthetic Lethality...................... 28
Contextualising Putative Synthetic Lethal Pairs vs. Canonical Synthetic Lethal
VUINETADIIIEIES. ...ttt ettt et et e et sae e et e sbteeabeebeesnneenneans 28
Transport-Enriched Biomarkers and Oncogenic-Enriched Targets Reflect Canonical
Synthetic Lethal NetWork LOIC.......c.covuiiiiiiiieeieeiieeie ettt st e ens 29
Meaningful yet Modest Survival Signals...........cccoeviiriiieiiiiiiiiiiecieeieece e 30
From Synthetic Lethality to Therapeutic Translation.............cccceevveeriieriieniieniienieeieeeie e 31
Strengths, Limitations and Future DIir€Ctions...........c.cecveeriieriieiiienieeiienie e 31
Multi-Cancer Pipeline Applicability........ccccccuieiiieriiieiiieiiieieeieeie e 32
CONCIUSION..ccueeeniiiicniniiinteentecsaisstisseessiesstsssesssessssssssnssssssssassssssssassssssssassssesssssssassssassssssssass 32
Bibliography 33
Appendices 36
Supplementary FIGUIE 1........coooiiiiiiiiiiiieiiieie ettt sttt sbe et eebeessaeensaens 36
Supplementary Figure 1: Distribution of GISTIC CNA Scores in TCGA HGSOC..
36
Supplementary TabIe L.........ccciiiiiiiiiiiii et e e b e e ea e e e ssbeeenaeeesaeeenes 36
Supplementary Table 1: Annotation of Datasets Used in This Study.................... 36
SUPPIemMENtary FIGUIE 2......cccuiiiiiiiieiieeie ettt e e e e e e sab e e eveeeaaeeenseeennaeeennes 38
Supplementary Figure 2: Cross-Validation of TCGA CNA-—Protein Hits in
HGSOC Cell LINES....ueiuiiriieiieieeiiesieeiesitestete ettt 38
Supplementary FIGUIE 3........coooiiiiiiiiieiecieeie ettt ettt et eebeesbeeesbeensaeennaens 39



Supplementary TabIe 2........ccocuiiiiiiiiiiie ettt ee e e et e et eesaeeesbeeenbeeenaeeenes 40

Supplementary Table 2: Tractability Classification of Synthetic Lethal Target

List of Abbreviations

e ACLY - ATP Citrate Lyase

o ACTN4 - Actinin Alpha 4

e Al - Artificial Intelligence

e API - Application Programming Interface

o ATR - ATR Serine/Threonine Kinase

e AUC - Area Under the Curve

e BioGRID - Biological General Repository for Interaction Datasets
e BRCA - Breast Cancer gene

e CCNEL1 - Cyclin E1

e CDK4 - Cyclin Dependent Kinase 4

e CHD?7 - Chromodomain Helicase DNA Binding Protein 7

e CHKI1 - Checkpoint Kinase 1

e (I - Confidence Interval

e CLI - Command Line Interface

e CNA - Copy Number Alteration

o CRISPR - Clustered Regularly Interspaced Short Palindromic Repeats
e (CSV - Comma-Separated Values

e DDR - DNA Damage Response

e DepMap - Cancer Dependency Map

e FDR - False Discovery Rate

e FET - Fisher's Exact Test

o GDSC - Genomics of Drug Sensitivity in Cancer

o GISTIC - Genomic Identification of Significant Targets in Cancer
e GO:BP - Gene Ontology Biological Process

e HC3 - Heteroskedasticity-Consistent (type 3)

e HGNC - HUGO Gene Nomenclature Committee



HGSOC - High-Grade Serous Ovarian Cancer

HR - Hazard Ratio

ITPR2 - Inositol 1,4,5-Trisphosphate Receptor Type 2
JSON - JavaScript Object Notation

KRAS - KRAS Proto-Oncogene

MAPKI1 - Mitogen-Activated Protein Kinase 1
MECOM - MDSI1 And EVI1 Complex Locus

MYC - MYC Proto-Oncogene

NAALADL?2 - N-Acetylated Alpha-Linked Acidic Dipeptidase Like 2
NF1 - Neurofibromin 1

OLS - Ordinary Least Squares

ORF - Open Reading Frame

OS - Overall Survival

PARP - Poly(ADP-ribose) polymerase

PFS - Progression-Free Survival

PIK3CA - Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha

PPI - Protein-Protein Interaction

RAF1 - Raf-1 Proto-Oncogene

RB1 - RB Transcriptional Corepressor 1
RPPA - Reverse-Phase Protein Array
SCNA - Somatic Copy Number Alteration
SL - Synthetic Lethal/Synthetic Lethality
STRING - Search Tool for the Retrieval of Interacting Genes/Proteins
TCGA - The Cancer Genome Atlas
TNBC - Triple-Negative Breast Cancer
TP53 - Tumor Protein P53

TXNRDL1 - Thioredoxin Reductase 1
URI1 - URII1, Prefoldin Like Chaperone



Scientific Abstract

High-grade serous ovarian cancer (HGSOC) is the most prevalent and aggressive subtype of
ovarian cancer, characterised by late-stage diagnosis and poor prognosis due to frequent relapse
following chemotherapy and lack of effective screening strategies. There is an urgent global need
for novel, targeted, and personalised therapeutic strategies to improve patient outcomes. This
project employs a synthetic lethality framework to identify biomarkers and therapeutic
vulnerabilities specific to HGSOC. Synthetic lethality exploits gene pairs whose concurrent
disruption selectively induces cancer cell death while sparing normal cells, thereby revealing
potential precision drug targets.

We integrate multi-omics data from ovarian cancer cell lines and patient tumours to identify
recurrent genetic alterations indicative of cancer-specific weaknesses. Leveraging large-scale
CRISPR screening datasets, we systematically identify essential genes whose perturbation is
lethal in the context of these alterations. Subsequently, candidate therapeutic targets are
prioritised based on existing drug availability or feasibility of drug development.

The outcome will be a curated list of clinically actionable targets and combination therapy
candidates designed to inform precision oncology approaches for HGSOC. By exploiting
cancer-specific vulnerabilities, this research aims to contribute to improved treatment paradigms,
enhanced quality of life and prolonged survival for patients afflicted with high-grade serous

ovarian cancer.



Introduction

Clinical Challenges of High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is the most common and lethal subtype of ovarian
cancer (Punzon-Jiménez et al., 2022). Due to vague early symptoms, most HGSOC cases present
at advanced stages (III/IV), resulting in an aggressive disease course with poor prognosis
(Punzén-Jiménez et al., 2022). Standard treatment consists of maximal cytoreductive surgery
followed by platinum/taxane chemotherapy. While this approach often induces an initial
remission, the cancer recurs in ~70-80% of patients and eventually develops resistance to
chemotherapy (Pignata et al., 2017). Consequently, the five-year survival rate for advanced
HGSOC lingers around 30%, a statistic that has improved little in recent decades (He, Li and
Zhang, 2023). Molecularly, HGSOC tumours are characterised by pervasive chromosomal
instability and extensive copy number alterations, leading to heightened inter- and intra-tumoural
heterogeneity (Kleinmanns and Bjerge, 2024). These clinical and molecular challenges
underscore an urgent need for new therapeutic strategies that go beyond the one-size-fits-all
approach of surgery and cytotoxic chemotherapy. In particular, precision oncology approaches
are sought to exploit tumour-specific vulnerabilities and improve outcomes for this deadly

gynaecological cancer.

Synthetic Lethality: A Precision Oncology Approach

One promising avenue for mechanistically grounded, tumour-selective therapy is the concept of
synthetic lethality. Synthetic lethality describes a scenario in which the concurrent perturbation
of two genes is lethal to cells, whereas disruption of either gene alone is survivable (Kaelin,
2005; Shieh, 2022). In cancer, this implies that if a tumour harbours a particular genetic
alteration (mutation, deletion or amplification), inhibition of a partner gene essential only in that
altered context can trigger selective cancer cell death while sparing normal cells (Kaelin, 2005;
Shieh, 2022). This approach directly targets “cancer vulnerabilities” rooted in the tumour’s
genotype. A hallmark example is the lethal interplay between BRCAI/2 loss and
poly(ADP-ribose) polymerase (PARP) inhibition, tumours with BRCA mutations (deficient in
homologous recombination DNA repair) are sensitive to PARP inhibitors, which induce
irreparable DNA damage in the absence of functional BRCA, killing the cancer while normal

cells with intact BRCA are unharmed (Helleday, 2011; Shieh, 2022). This synthetic lethal



strategy led to the first FDA-approved targeted therapy for HGSOC — PARP inhibitors in patients

with BRCA mutations or homologous recombination deficiency (Ragupathi et al., 2023). This
validated the broader principle that leveraging tumour-specific genetic defects can yield
effective, less toxic treatments. Building on this success, multiple synthetic lethal interactions are
under active investigation. For instance, inhibiting DNA damage response kinases like ATR and
CHK]I can preferentially sensitise cancer cells to DNA damage or PARP blockade and such
agents are being tested in combination trials (Kleinmanns and Bjerge, 2024). Overall, the
synthetic lethality paradigm offers a rational framework to discover actionable cancer
vulnerabilities and thus, by pinpointing gene pairs where one is frequently altered in HGSOC
and the other can be targeted, we can identify novel therapeutic opportunities grounded in

tumour biology.

Integrative Framework for Biomarker Discovery and Synthetic Lethal Screening

In light of HGSOC’s genomic complexity, our research deploys an integrative multi-omics
strategy to systematically uncover and validate synthetic lethal interactions with translational
potential. We begin by identifying candidate biomarkers, which are genes recurrently amplified
or deleted in HGSOC, through analysis of large patient tumour datasets (e.g. TCGA copy
number and proteomic profiles). Such aberrations are hypothesised to represent cancer-specific
vulnerabilities which may be exploited. We then overlay functional genomic data from
large-scale CRISPR-Cas9 knockout screens in HGSOC cancer cell lines to find genes that
become essential only in the presence of those HGSOC-specific alterations. This unbiased
in-silico screening approach, similar to prior large-scale dependency analyses, enables the
nomination of putative synthetic lethal gene pairs (Zhan et al., 2019). To prioritise pairs with
clinical relevance, we incorporate pharmacogenomic and druggability data, favouring targets for
which small-molecule inhibitors or biologics exist or can be developed.

Notably, we introduce a novel multi-agent literature mining platform, “OncoSynth,” to rigorously
validate and contextualise each candidate synthetic lethal interaction. OncoSynth autonomously
gathers evidence from biomedical literature, drug databases and clinical trial registries for a
given gene pair, integrating information on any reported co-lethality, known drug targets and
clinical studies, and then ranks the pair’s therapeutic potential. This automated, Al-driven tool is

a key innovation of our framework and aids in identifying whether shortlisted synthetic lethal



pairs are supported by existing evidence and mechanistic rationale, reinforcing their translational

promise.

This project, funded by Breakthrough Cancer Research, exemplifies a bench-to-bedside
approach. By uniting genomic biomarkers with functional dependency screens, we aim to create
a pipeline for discovering HGSOC-specific lethal gene interactions that can be readily translated
into precision therapies. In the following report, we detail this approach and highlight how
harnessing synthetic lethality can expand the therapeutic arsenal against HGSOC’s otherwise
treatment-refractory biology, ultimately striving to improve survival and hope for patients with

this aggressive cancer.

Materials and Methods

Data Acquisition

To identify candidate synthetic lethal interactions in HGSOC, we integrated clinical, genomic,
proteomic and functional dependency datasets from The Cancer Genome Atlas (TCGA) and the
Cancer Dependency Map (DepMap). TCGA data were downloaded from cBioPortal (study ID:
ov_tcga_pan_can_atlas_2018), including gene-level somatic copy number alterations
(CNAs) inferred using GISTIC2 (scores: -2 to +2) (see Supplementary Figure 1) and matched
reverse-phase protein array (RPPA) profiles.

The RPPA data were validated to originate from the iTRAQ-based CPTAC proteomics dataset
described by (Zhang et al, 2016). Clinical data is also present in the
ov_tcga_pan_can_atlas_2018 folder, named data_clinical_patient.txt.

To assess gene essentiality, we used CRISPR-Cas9 dependency scores from the DepMap 24Q1
Chronos release, spanning approximately 1100 cell lines. A curated panel of 23 ovarian cancer
cell lines was obtained from the DepMap Context resource for High-Grade Serous Ovarian
Cancer. Of these, only 21 cell lines had available copy number data and were retained for
CNA-based analyses (OVCAR4 and CAOV3 were not present in the CNA matrix). For
CRISPR-based dependency analysis, only 18 of the 23 lines had available gene effect scores
(SNU119, OVSAHO, OVCAR4, FUOV1, and OVKATE were not present in the Chronos gene
effect matrix). An annotation of all datasets used in this study can be viewed in Supplementary

Table 1.




Candidate Biomarker Filtering in TCGA Tumours

Somatic copy number alterations (CNAs) were obtained as discrete GISTIC2 scores ranging
from —2 (deep deletion) to +2 (high-level amplification). Genes were retained for downstream
analysis if they were amplified or deleted in at least 5% of TCGA HGSOC samples.

To enable integration with proteomic profiles, the CNA gene list was aligned with RPPA protein
expression data using Entrez Gene IDs. Protein identifiers in the RPPA matrix (HGNC symbols
and aliases) were mapped to Entrez IDs using the HGNC

gene_with_protein_product.txt reference file from HGNC. Genes lacking a valid

Entrez mapping or protein expression data were excluded.

CNA-Protein Integration and Statistical Modelling

To evaluate the functional relevance of somatic CNAs, we assessed whether gene amplifications
or deletions were associated with consistent changes in protein expression across TCGA HGSOC
samples. CNA scores and RPPA values were merged for each gene and sample, retaining only
genes with matched data in at least six patients. For each gene, a univariate linear regression

model was fitted:
Protein ~ fo + f1 x CNA + ¢

where CNA was treated as an ordinal variable (-2 to +2). The slope coefficient B: estimated the
direction and strength of the association and statistical significance was assessed using the
corresponding p-value. Genes were classified as significant if the CNA—protein linear regression
returned a p-value < 0.05, irrespective of slope direction. This approach captures any consistent

association between CNA state and protein abundance.

Validation of CNA—Protein Biomarkers in Ovarian Cancer Cell Lines

To assess whether the CNA—protein associations observed in patient tumours were recapitulated
in experimental models, we analysed absolute copy number data from the DepMap 24Q4 release.
Twenty-one HGSOC cell lines were retained after filtering, with gene identifiers harmonised by
Entrez IDs to enable integration with TCGA-derived candidates. Thresholds for deep deletion
(CN < 1) and high-level amplification (CN > 6) were applied. Initially, genes were considered

altered if at least 5% of independent cell lines (n > 2) exhibited the event, however to increase



statistical rigor, this was increased to 3 independent cell lines. These lists were then intersected

with the tumour-derived CNA—protein hits to obtain a subset of biomarkers with support in both
primary tumours and cell line models.
All steps involved in candidate gene filtering from TCGA and DepMap datasets, including CNA

thresholding, recurrence criteria and proteomic alignment are visually illustrated in Figure 1.

Regression-Based Synthetic Lethality Screening in HGSOC Cell Lines

Synthetic lethal interactions were inferred by modelling CRISPR gene dependency scores as a
function of biomarker copy number status in DepMap HGSOC cell lines. To reduce redundancy,
biomarkers with identical CNA profiles across all lines were clustered. The first gene in a cluster
was temporarily selected as the representative gene of that cluster.

For each biomarker—target pair, ordinary least squares (OLS) regression was fitted with gene
dependency as the outcome and biomarker CNA as the predictor. Regression coefficients were
estimated with heteroskedasticity-consistent (HC3) variance adjustment. Effect size was
calculated as the slope P standardised by the variance of dependency scores, reflecting the
magnitude of dependency change per unit CNA (i.e. Cohen’s D).

A multiple-testing correction was applied using the Benjamini-Hochberg procedure. Pairs were
classified as candidate SL interactions if they met three conditions: FDR < 0.05, effect size <0,
and predicted dependency at CNA = 2 > —0.6 (to exclude broadly essential genes). A potency
filter was then applied, requiring the difference between observed mean dependency at CNA > 6
and the regression-predicted dependency at CNA = 2 (delta effect) to be < —0.2, ensuring that
only amplified contexts that showed enhanced vulnerability were retained. The equation can be

viewed below.
Dependency; = o + 1 - CNA,; + ¢

where Dependency; is the CRISPR gene effect score in cell line i, CNA; is the copy number

value of the biomarker in the same line.
Delta is defined as:
A = mean(Dependency)CNAZ6 - yCNAZZ

with Yenaze = Bo + 2B:1 being the model-predicted dependency at CNA = 2.
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Figure 1: Workflow for Synthetic Lethality Discovery in Amplified HGSOC Genes.

A schematic overview of the analytical pipeline used to identify synthetic lethal interactions in high-grade serous
ovarian cancer (HGSOC). The workflow integrates TCGA-derived copy number and proteomic data to identify
amplification-linked genes, which are then validated in DepMap HGSOC cell lines. Candidate biomarkers are

filtered by recurrence, protein expression association and cross-cohort concordance.




Al-Based Synthetic Lethality Literature Mining

Agent Design and Purpose

To systematically evaluate whether candidate synthetic lethal interactions identified in silico are
supported by existing biomedical evidence, we developed OncoSynth, a multi-agent framework
for automated literature and database mining. The design goal was to prioritise biomarker—target
gene pairs with the strongest therapeutic and translational potential by integrating evidence
across PubMed, Open Targets and ClinicalTrials.gov. Unlike single-source approaches, the
multi-agent framework allows parallelised evidence gathering followed by structured synthesis
and confidence scoring, ensuring both breadth and reproducibility in the evaluation of candidate

pairs.

Input Parameters and Execution Modes

OncoSynth accepts gene pairs defined as a biomarker and its putative synthetic lethal partner.
Two execution modes were implemented. In batch mode, gene pairs are imported from a
structured CSV file and processed sequentially, generating individual reports for each pair. In
interactive mode, biomarker—target pairs can be entered directly via the command line interface
(CLI), enabling real-time exploration of individual hypotheses. Both modes route inputs through

the same underlying pipeline, ensuring consistency of evidence retrieval and report generation.

Multi-Agent Architecture

The system was constructed in Python using the CrewAl framework, with each module
encapsulated as a specialised agent assigned a discrete role. A PubMed search agent interrogates
the biomedical literature for co-occurrence of the biomarker and target, prioritising abstracts
explicitly mentioning synthetic lethality. Two other independent PubMed literature agents assess
the broader oncogenic context of each gene individually, with emphasis on ovarian cancer. Drug
annotation is performed by an Open Targets agent, which retrieves tractability scores, known
inhibitors, mechanisms of action and clinical status. Clinical relevance is further evaluated by a
ClinicalTrials.gov agent, which identifies interventional trials and extracts study phase,
recruitment status and condition type.

The outputs of these retrieval agents are synthesised by a biomedical analyst agent, which

integrates the evidence with attention to cancer specificity and mechanistic plausibility. A



deterministic confidence scoring tool then applies a weighted rubric, assigning up to 40 points

for direct synthetic lethality evidence, 30 for druggability, 15 for clinical trial support and 15 for
cancer relevance. Reports are finally authored by a technical writer agent, which converts the

structured JSON evidence into a markdown report formatted for clinical and research audiences.

Output and Scoring Framework

For each gene pair, OncoSynth produces a structured report containing background information,
supporting synthetic lethality evidence, drug target data, clinical trial annotations, translational
implications, and references with PubMed identifiers. Reports are prefixed with a confidence
score ranging from 0 to 100, which is calculated reproducibly by the deterministic scoring agent.
Scores below 50 are labelled as low-confidence, while scores of 50 or higher are designated

high-confidence.

Sofiware and Tools

The agent was implemented in Python using the following packages: crewAI, Bio.Entrez,

langchain-openai, pydantic and requests. The PubMed interface uses NCBI Entrez

E-utilities, the drug module uses the Open Targets v4 GraphQL API, and clinical trials are
fetched via ClinicalTrials.gov v2 REST API.

All source code, including execution scripts for batch (batch.py), interactive
(interactive.py) modes, deterministic scoring functions and logging utilities, is available

upon request. The full agent architecture, including input-output flow and modular agent roles, is

summarised in Figure 2.
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Figure 2: Architecture of the OncoSynth Multi-Agent Literature Mining System.

Schematic overview of the OncoSynth framework for synthetic lethality evidence retrieval and integration.
Independent agents query PubMed for biomarker—target co-occurrence and cancer-specific literature, Open Targets
for druggability and therapeutic annotations, and ClinicalTrials.gov for trial evidence. Outputs from these retrieval
modules are passed to an analyst agent, which synthesises the findings, and a deterministic scoring agent, which
assigns a reproducible confidence score (0—100) across four evidence domains. A technical writer agent generates
the final structured markdown report, which is output in batch or interactive execution modes.



Protein—Protein Interaction Validation of Synthetic Lethal Pairs (BioGRID)

To assess whether synthetic lethal pairs identified from regression screening were biologically
supported by protein—protein interaction (PPI) networks, we integrated results with BioGRID
(release 4.4.241). BioGRID tab-delimited interaction data were filtered to retain only physical
interactions between human proteins (taxon ID 9606) and to exclude self-interactions. The
resulting dataset comprised 862,452 unique interaction pairs involving 19,995 unique human
genes.

For each biomarker—target pair identified as a potent SL hit, we calculated several measures of
network connectivity. First, we determined whether the biomarker and target directly interacted
in BioGRID. Second, we computed the number of total interactors for each gene, the number of
shared interactors and the Jaccard index of overlap. To evaluate whether observed overlap
exceeded random expectation, a Fisher’s exact test (FET) was applied to a contingency table of
shared versus unique interactors, yielding a log-transformed p-value as the “FET PPI overlap”
statistic. Biomarker clusters containing multiple co-amplified genes were resolved by selecting a
single representative gene per cluster, prioritising non-ORF symbols and genes with higher PPI
connectivity. The representative biomarker, along with PPI-derived overlap metrics, was merged

back into the potent SL hit set, producing a final “PPI-validated” SL dataset.

Network and Pathway Analysis of Potent Synthetic Lethal Targets (STRING & g:Profiler)

To investigate whether potent synthetic lethal (SL) pairs were supported by known functional
networks in a second database, we evaluated both direct protein—protein interactions (PPIs) and
biological pathway enrichment in STRING. Potent SL hits with HGNC annotations were
cross-referenced with the STRING v12.0 database. STRING protein links were filtered to retain
human interactions with a combined confidence score >400, corresponding to medium
confidence. For each biomarker—target pair, we determined whether a direct PPI was supported
under this threshold and summarised the number of pairs validated.

To assess biological coherence of SL genes, we conducted pathway enrichment analysis using
g:Profiler (v1.0). Separate enrichment runs were performed for amplified biomarkers and for SL
targets, testing against Gene Ontology Biological Process (GO:BP) terms. Significant terms were
defined as those meeting g:Profiler’s multiple-testing correction (adjusted p < 0.05). To visualise

enrichment patterns, we network-based chord diagrams where pathways and genes were



collapsed into broader functional categories (e.g. cell cycle, chromatin organisation,

mitochondrial translation).

Benchmarking Synthetic Lethal Pairs Against Public Databases

To assess whether the potent synthetic lethal (SL) pairs identified from regression screening in
HGSOC cell lines had prior evidence, we benchmarked them against two public SL resources:
SynLethDB and ISLE. SynLethDB aggregates experimentally validated, literature-curated, and
computationally predicted SL interactions, providing a comprehensive knowledgebase. In
contrast, ISLE is a computational pipeline that infers clinically relevant SL pairs by integrating
tumour molecular profiles, patient survival data and evolutionary conservation (Lee et al., 2018;
Wang et al., 2022).

For each biomarker—target pair, gene symbols were normalised to uppercase HGNC identifiers.
Pairs were then queried in both databases in either direction (biomarker—target or
target-biomarker). Binary flags were assigned for presence in SynLethDB and ISLE. A final
novelty indicator was created for pairs absent from both resources. The merged benchmarking

results were exported for integration into downstream translational reporting.

Clinical and Genomic Data Processing

We analysed The Cancer Genome Atlas high-grade serous ovarian carcinoma (TCGA-OV,
PanCanAtlas 2018) cohort to assess the prognostic relevance of amplification events in SL
biomarkers. The unique biomarker candidates from the biomarker-target pairs were mapped to
TCGA GISTIC2 copy-number calls using Entrez ID-HGNC cross-referencing. Deep
amplifications were defined as GISTIC score = 2, consistent with the binary threshold applied in
prior analyses. Clinical annotations were retrieved from cBioPortal, including overall survival
(OS) and progression-free survival (PFS) time and status. Patient IDs were harmonised across
genomic and clinical datasets and only patients with both CNA and clinical data available were
retained. Thereafter, only cases with age information were retained for Cox regression

modelling.



Survival Modelling

Univariate and age-adjusted Cox proportional hazards models were fitted separately for OS and
PFS. Models were restricted to biomarkers with >50 patients and at least five individuals in both
amplified and non-amplified groups. Hazard ratios (HRs), 95% confidence intervals (Cls) and
p-values were extracted for each biomarker. Benjamini—Hochberg correction was applied across

all tests to control the false discovery rate (FDR).

Synthetic Lethal Target Prioritisation and Drug Tractability Analysis

We assessed the therapeutic potential of unique synthetic lethal target genes from the
biomarker-target pairs using the Open Targets Platform API to systematically evaluate drug
tractability across multiple therapeutic modalities. Tractability scores were computed for small
molecules (8 buckets: approved drugs, clinical precedence, discovery precedence, predicted
tractable), antibodies (9 buckets: clinical precedence, high/medium confidence based on protein
localisation), and other clinical modalities (3 buckets). Each gene received binary scores across
tractability categories, which were aggregated into bucket sums and classified into hierarchical

categories: Clinical Precedence > Discovery Precedence > Predicted Tractable > Unknown.

Drug-Target Mapping and GDSC Integration

Known drugs for tractable targets were extracted from Open Targets and cross-referenced with
the Genomics of Drug Sensitivity in Cancer (GDSC) pharmacogenomics database. Drug names
were manually curated to resolve nomenclature inconsistencies between databases (e.g.,
"SORAFENIB TOSYLATE" — "SORAFENIB"). We filtered unique compounds tested in
HGSOC cell lines, identifying overlapping drugs available for correlation analysis with synthetic

lethal pairs.

Copy Number-Drug Sensitivity Correlation Analysis

For validation of synthetic lethal relationships, we correlated biomarker copy number
amplification (DepMap absolute copy number >6) with drug sensitivity (GDSC AUC values)
using Pearson correlation. Cell line identifiers (ARXSPAN IDs) were standardised across

datasets and analysis was restricted to pairs with >3 overlapping cell lines. Statistical



significance was assessed using two-tailed tests, with correlation strength thresholds of |r| > 0.7

for strong relationships.

Results

Identification of CNA—Protein Associations in TCGA HGSOC

To prioritise candidate biomarkers, we first applied a prevalence filter requiring copy number
alterations in at least 5% of tumours in the TCGA HGSOC cohort (n = 572 x 0.05 = 29). This
yielded 3,334 amplified and 359 deleted genes, corresponding to 3,693 unique candidates.
Integration with RPPA profiles was performed by harmonising gene identifiers through
HGNC-to-Entrez mappings, resulting in 1,111 genes with matched CNA and protein expression
data across 119 overlapping patient samples.

We next evaluated the impact of CNAs on protein abundance using univariate linear regression
models, treating the discrete GISTIC scores (—2 to +2) as ordinal predictors of protein levels. Of
the 1,111 evaluable genes, 737 displayed significant CNA—protein associations at a nominal
threshold of p < 0.05. These genes, in which copy number state consistently predicted protein
abundance, represent the filtered set of functionally supported biomarkers that were carried

forward for downstream cross-validation in ovarian cancer cell line datasets.

Cell Line Support for Amplified Biomarkers

Across the 21 HGSOC cell lines, this filtering identified 4,556 amplified genes and 42 deleted
genes. Comparison with the 737 tumour-derived candidates revealed 325 overlapping amplified

genes, whereas no deletions passed the prevalence threshold in both datasets (see Supplementary

Figure 2). These 325 amplified genes were designated as the cross-validated biomarker set and
prioritised for downstream synthetic lethality screening. The filtering pipeline and resulting

genes can be viewed in Table 1.



Table 1: Sequential Filtering Steps for TCGA—-DepMap

Filtering Step

ration and Candidate Biomarker Selection

Initial amplified genes (=5% patients) - TCGA 3,334
Initial deleted genes (>5% patients) - TCGA 359
Total unique candidate genes 3,693
Genes with matched proteomics data 1,111
DepMap significant genes (regression: p < 0.05) 737
Initial amplified genes (>5% cell lines) - DepMap 4556
Initial deleted genes (>5% cell lines) - DepMap 42
TCGA-validated amplified genes cross-checked in DepMap 325
TCGA-validated deleted genes cross-checked in DepMap 0

Identification of Potent Synthetic Lethal Interactions

Across all biomarker—target combinations tested (n = 5.2 x 10°), we identified 3,476 pairs with
FDR < 0.05, of which 1,601 showed negative effect sizes consistent with synthetic lethal
interactions. Filtering to exclude targets broadly essential in diploid contexts reduced this to
1,075 “selective” hits. Imposing the potency criterion (delta effect < —0.2) yielded a final set of
735 potent synthetic lethal interactions. These results demonstrate that regression modelling of
copy number variation against CRISPR gene effect scores can robustly capture context-specific

dependencies in HGSOC. The global distribution of regression results and examples of

biomarker—target interactions are shown in Figure 3.

Number of Genes Remaining




A Volcano Plot: Synthetic Lethality in Amplified Biomarkers
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Figure 3: Regression-Based Synthetic Lethality Screening in HGSOC Cell Lines.

(A) Volcano plot showing the distribution of regression results across ~521,000 biomarker—target tests. The x-axis
indicates effect size (standardised regression slope, ), and the y-axis shows —logi(FDR). Red points denote
significant hits (FDR < 0.05 and effect size < 0).

(B) Example regression plot of CHD7 copy number versus CDK4 dependency score, illustrating a significant
synthetic lethal interaction. Each point represents a DepMap HGSOC cell line, with regression fit shown in black.
(C) Example regression plot of NAALADL2 copy number versus RAF1 dependency score, highlighting a second

representative interaction.



Limited Direct Interactions but Widespread Network Overlap

The processed BioGRID dataset encompassed over 850,000 unique protein interactions.
Intersection with the potent synthetic lethal set revealed that only 24 biomarker—target pairs
(3.3%) were supported by direct physical interactions. However, when expanded to
representative biomarker—target pairs (n = 735), 620 pairs (84.4%) shared at least one common
interactor, indicating extensive indirect connectivity within the protein interaction network.
These shared interactors included canonical tumour suppressors and oncogenic regulators such
as TP53 and MYC, respectively, which recurred across multiple synthetic lethal relationships,
Supplementary Figure 3.

Fisher's exact test identified 124 pairs (16.9%) with statistically significant enrichment of shared
protein interactions (p < 0.05), suggesting that synthetic lethal dependencies are underpinned by
coherent network modules rather than random associations. The median number of shared
interactors amongst connected pairs was 6, with Jaccard similarity indices averaging 0.029,
indicating moderate but meaningful network overlap. Representative biomarker selection within
amplification clusters ensured that poorly characterised genes did not dominate the analysis
whilst maintaining biological relevance.

A panel of key plots can be viewed in Figure 4.

STRING Support and Pathway Enrichment of SL Hits

At the STRING confidence threshold of 400, 15 biomarker—target pairs were supported by direct
physical interactions between the two genes.

Pathway enrichment analysis revealed strong functional clustering of both biomarkers and
targets. Amplified biomarkers were enriched for pathways associated with molecular transport
and RNA metabolism, consistent with roles in protein localisation and transcript processing.
Synthetic lethal target genes were enriched in canonical cancer hallmarks, including cell cycle
progression, checkpoint regulation, DNA repair and synthesis, chromatin organisation, and
mitochondrial translation. Additional clusters included pathways related to protein synthesis and

degradation and stress response and apoptosis.



Protein-Protein Interaction Analysis of Synthetic Lethal Gene Pairs
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Figure 4: Protein-Protein Interaction Network Analysis Validates Synthetic Lethal Gene Pair Relationships.
(A) Scatter plot showing the relationship between number of shared protein-protein interactions (PPIs) and Jaccard
similarity index for 735 representative biomarker—target pairs. Points are coloured by statistical significance (red,
Fisher's exact test p < 0.05; grey, non-significant).

(B) Proportion of synthetic lethal pairs with direct versus indirect protein interactions.

(C) Frequency distribution of shared PPI counts, showing the number of gene pairs for each level of network
connectivity (top 15 categories shown).

(D) Summary statistics for the complete dataset. Analysis demonstrates that 84.4% of synthetic lethal pairs share
protein interactions, with 16.9% showing statistically significant enrichment. Network-mediated relationships
(indirect interactions) predominate over direct protein—protein contacts (84.4% versus 4.2%), supporting a model
wherein synthetic lethal dependencies arise through disruption of interconnected functional modules rather than
direct physical associations.

Predominantly Unestablished Synthetic Lethal Interactions

Of the 735 potent SL pairs tested, 3 were found exclusively in SynLethDB, 0 were unique to
ISLE, and 1 pair was reported in both databases. The remaining 731 pairs (99.5%) were absent
from both resources. This benchmarking step demonstrated that the vast majority of the
candidate interactions identified in our HGSOC-focused screen represent previously unreported

synthetic lethal relationships.



Clinical Cohort Characteristics

Among the 558 patients with matched biomarker and clinical data , 330 OS events (59.1%) were
observed, with a median OS of 33.3 months. For PFS, 407 events (71.3%) occurred, with a
median of 14.7 months. Biomarker amplification frequencies had a median of 8.4% across the

cohort.

Cox Regression Outcomes

Across 201 biomarkers tested, no associations with OS or PFS remained significant after FDR
correction (FDR < 0.05). However, 9 biomarkers showed nominal significance (adjusted p <
0.05) in the age-adjusted OS models, including URI! (HR = 1.41, p = 0.022), ACTN4 (HR =
1.53, p = 0.028), and CCNEI (HR = 1.33, p = 0.0498). For PFS, 9 biomarkers reached nominal
significance, the most notable being /TPR2 (HR = 1.58, p = 0.014) and URI! (HR =1.39,p =
0.021).

Kaplan—Meier Analyses

Exploratory Kaplan—Meier survival curves were generated for three key biomarkers. CCNEI
amplification (n=110) was associated with reduced OS (median 38.0 vs 48.1 months, log-rank p
= 0.0010). ACTN4 amplification (n=51) similarly correlated with worse OS (36.4 vs 47.6
months, log-rank p = 0.0110). URII amplification (n=101) was also strongly associated with
inferior outcomes (38.0 vs 47.7 months, log-rank p = 0.0001).

Summary

Although no biomarkers achieved FDR-significant associations, several candidates demonstrated
consistent nominal signals across OS and PFS, with hazard ratios in the range of 1.3—1.5 and
amplification frequencies of 8-18%. These include CCNEI, a well-established oncogene in

HGSOC, along with URII and ACTN4, which warrant prioritisation for further validation, see
Figure 5.
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Figure 5: Biomarker Survival Analysis In High-Grade Serous Ovarian Carcinoma.

(A) Volcano plot showing progression-free survival (PFS) analysis of 200 pre-specified biomarkers. Points represent
individual biomarkers plotted by logzx(hazard ratio) versus -logi(p-value). Red points indicate biomarkers with
nominal significance (p < 0.05), grey points represent non-significant biomarkers. Horizontal dashed line indicates p
= 0.05 significance threshold. Vertical dashed lines represent hazard ratio reference thresholds (HR = 0.8 and HR =
1.25). Significant biomarkers are labelled with gene names. Statistics box shows total biomarkers tested, number
achieving nominal significance, and median patient sample size.

(B) Volcano plot showing overall survival (OS) analysis of the same 200 biomarkers. Layout and statistical
thresholds are identical to panel A. Gene labels indicate biomarkers achieving nominal significance for overall
survival outcomes.

(C) Kaplan-Meier curves showing overall survival stratified by CCNE1 amplification status. Red curves represent
patients with amplified biomarkers, blue curves represent patients without amplification. P-values were calculated
using the log-rank test. Sample sizes for each group are indicated in the legend. Median survival times are displayed
in the text box, with "NR" indicating not reached. Shaded areas represent 95% confidence intervals.

(D) Kaplan-Meier curves showing overall survival stratified by ACTN4 amplification status. Format and statistical
methods identical to panel C.

(E) Kaplan-Meier curves showing overall survival stratified by URI1 amplification status. Format and statistical
methods identical to panel C.

Grid lines are included in all panels to aid in reading survival probabilities, hazard ratios, and p-values. All analyses
were performed on the same HGSOC patient cohort with biomarker amplification data available.




Therapeutic Tractability Landscape of Synthetic Lethal Targets

Of 229 synthetic lethal target genes analyzed, 148 (64.6%) demonstrated tractability evidence
across at least one therapeutic modality. Small molecule tractability was most prevalent, with 7
targets having approved drugs, 13 showing clinical precedence, and 89 exhibiting discovery
precedence. For antibody-based therapeutics, 51 targets showed high confidence tractability and
30 showed medium confidence based on protein localisation and accessibility. Notably, tier 1
targets with the highest synthetic lethal effect sizes (KRAS, CDK4, RAF1, ACLY, TXNRD]I) all
demonstrated strong small molecule tractability with approved drugs, indicating immediate

therapeutic relevance.

Limited Drug Availability Constrains Pharmacological Validation

Cross-referencing of Open Targets drug annotations with GDSC revealed substantial gaps in
available pharmacological data. Of 28 unique drugs targeting synthetic lethal candidates, only 2
(7.1%) were available in GDSC: PALBOCICLIB and SORAFENIB. This limitation severely
constrained our ability to perform systematic correlation analyses between biomarker
amplification and drug sensitivity. Most absent compounds were recent clinical candidates
(SOTORASIB, ADAGRASIB, REVUMENIB) or specialized therapeutics not yet incorporated

into large-scale screening panels.

Proof-of-Concept Validation of CHD7-CDK4 Synthetic Lethality

We successfully demonstrated proof-of-concept validation for the CHD7-CDK4 synthetic lethal
relationship using PALBOCICLIB sensitivity data. In 4 high-grade serous ovarian cancer cell
lines with CHD7 amplification (copy number >6), we observed a strong negative correlation (r =
-0.763, p = 0.237) between CHD7 copy number and PALBOCICLIB AUC values, indicating that
higher CHD7 amplification associates with increased CDK4 inhibitor sensitivity. While
underpowered due to limited sample size (correlation of |r| > 0.950 required for significance at
N=4), this analysis demonstrates the feasibility of orthogonal validation using independent
pharmacogenomics datasets and supports the clinical translation potential of CNA-based
synthetic lethal screening approaches. Figure 6 contains a panel comprising the tractable genes

and associated pathways.
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Figure 6: Translational Validation and Tractability of Synthetic Lethal Biomarkers.

(A) Ranked distribution of the top 25 tractability scores derived from Open Targets, highlighting genes with existing
approved drugs or high-confidence tractability predictions.

(B) Validation plot showing the association between CHD7 amplification and sensitivity to palbociclib (target:
CDK4). A strong negative correlation was observed (r =—0.763), although it did not reach statistical significance (p
=0.237) due to the limited number of available HGSOC cell lines (n = 4).

(C) Bokeh chord plot mapping amplified biomarkers to their enriched biological pathways, as derived from pathway
collapse and g:Profiler analysis.

(D) Bokeh chord plot of tractable synthetic lethal targets and their associated pathways, focusing on genes with

clinical or therapeutic evidence of tractability.



Discussion

Copy Number Alterations as a Distinct Genomic Lens for Synthetic Lethality

Our identified synthetic lethal interactions extend beyond the canonical BRCA—PARP paradigm,
providing a benchmark to contextualise the novelty and potential impact of the HGSOC-specific,
copy-number-driven vulnerabilities uncovered here. Because this work is copy-number focused,
tumour suppressors such as TP53 and BRCA1/2, typically inactivated through mutation or
promoter methylation rather than copy number alteration were not central to the analysis
(Eskander and Tewari, 2014). This shift in emphasis allowed us to uncover new vulnerabilities
through a distinct genomic lens.

This study focused on genes passing the stringent TCGA GISTIC2 thresholds for deep
amplification (+2) or homozygous deletion (-2). Consequently, tumour suppressors more
commonly observed in the shallow deletion range (—1), such as PTEN, were not retained in our
analysis, despite their biological relevance in HGSOC. Nevertheless, this filtering captured the
key recurrent alterations reported by TCGA, including amplifications of MECOM, MAPKI,
KRAS, CCNEI and PIK3CA, and deletions of NF/ and RBI (Bell et al., 2011).

Contextualising Putative Synthetic Lethal Pairs vs. Canonical Synthetic Lethal Vulnerabilities

Canonical synthetic-lethal paradigms, such as SMARCA4-deficient cells exhibiting strong
depletion of SMARCA2 (Ehrenhofer-Wolfer et al., 2019), or STAG2-deficient isogenic cells
undergoing uniform cell death upon STAG! knockdown (Mondal et al., 2019), are consistently
described in the literature as acute, lethal, or strongly cytotoxic. By contrast, our
copy-number-driven model yields modest but statistically robust regression slopes (median d =
—0.26) across 17 cell lines, alongside substantial potency deltas (median A = —0.36) and strong
statistical confidence (median FDR = 0.005).

We recognise that the scales and readouts differ fundamentally: our study employs multi-line
regression analysis of high-level amplification states (GISTIC score +2), while canonical studies
use acute knockout or complete gene depletion in single or isogenic systems. Thus, comparisons
should be taken as qualitative indicators of biological plausibility rather than numeric
equivalences. Importantly, our amplification-driven approach captures a distinct biological
scenario, the effects of oncogene overexpression rather than complete gene loss, which naturally

leads to more graded dependency effects. Importantly, amplification-linked dependencies may



carry greater translational weight in HGSOC, where recurrent oncogene gains such as CCNE],

MECOM, and KRAS are far more prevalent than complete gene deletions (Harbers et al., 2021).
More broadly, meta-analyses have observed that oncogene-related synthetic lethal interactions
often manifest with smaller effect sizes, highlighting that modest but consistent dependencies can
still be biologically meaningful and therapeutically relevant (Lord, Quinn and Ryan, 2020).

Nevertheless, the consistency of "strong" vulnerability labels in established SL models provides
a qualitative benchmark for assessing the biological significance and translational potential of

our copy-number-specific hits.

Transport-Enriched Biomarkers and Oncogenic-Enriched Targets Reflect Canonical Synthetic
Lethal Network Logic

In our dataset, the divergence between transport-centred enrichment among biomarkers (e.g.,
protein/nitrogen compound transport, intracellular/Golgi vesicle transport, cellular localisation)
and oncogenic pathway enrichment among targets (mitotic cell cycle, chromatin
organisation/remodelling, DNA repair) reflects the underlying biology of copy-number-driven
HGSOC, (see Figure 6C & 6D).

Extensive somatic copy-number alterations (SCNAs) in HGSOC create broad amplification
blocks that inevitably carry “passenger” genes whose dosage shifts perturb homeostatic
processes such as trafficking and localisation, yielding transport-biased biomarker signals
(Beroukhim et al., 2010; Zack et al., 2013).

By contrast, the genes emerging as tractable targets cluster in cell-cycle control and
DNA-damage response (DDR) pathways, the same axes that genomically unstable tumours
become dependent upon to buffer replication stress and maintain viability (Kaelin, 2005;
O’Connor, 2015; McGranahan and Swanton, 2017; Lecona and Fernandez-Capetillo, 2018).

This interpretation is further reinforced by our tractability analysis, which highlights that key
cell-cycle regulators such as CCNEI (Discovery Precedence), CCNDI and CDK4 (Clinical
Precedence), together with chromatin remodellers including APC, ARID2 and BRPFI
(high-confidence antibody tractability), are categorised as druggable, (see Figure 6A). This
convergence of synthetic-lethal logic with tractability evidence underscores the plausibility of
targeting these dependencies in HGSOC.

This pattern aligns with established synthetic-lethality logic: genome-wide dosage imbalance

creates collateral vulnerabilities in essential maintenance circuits, while oncogene-addicted states



concentrate selective pressure onto a small set of survival pathways (Kaelin, 2005; Weinstein and
Joe, 2006). In HGSOC specifically, TCGA showed that high-grade serous tumours are
dominated by SCNAs, with recurrent amplifications (e.g., CCNEI, MECOM, KRAS) and

frequent pathway disruptions in RB, PI3K/RAS, homologous recombination and FOXM]I
networks, exactly the domains where SL targets are expected to sit (Bell et al., 2011).
Furthermore, the predominance of network-mediated over direct protein interactions (81.1%
versus 3.3%, see Figure 4B) supports a model wherein synthetic lethal relationships arise
through disruption of interconnected functional modules.

Taken together, transport-skewed biomarkers are best interpreted as signatures of CNA-induced
cellular burden, whereas the enrichment of targets in cell-cycle/DDR/chromatin modules reflects
actionable dependencies predicted by, and repeatedly validated in synthetic-lethal biology,
including the mutation-centred BRCA—PARP archetype (Helleday, 2011; Eskander and Tewari,
2014).

Meaningful yet Modest Survival Signals

The observed hazard ratios in our HGSOC biomarker analysis, ranging from 1.31 to 1.58 for
nominally significant (p-value < 0.05) associations, represent clinically meaningful effect sizes
that warrant further investigation despite falling below the threshold typically associated with
strong prognostic markers (Azuero, 2016). These moderate hazard ratios are consistent with the
polygenic nature of copy-number-driven oncogenesis in HGSOC, where individual amplified
genes contribute incrementally to disease progression rather than exerting dominant effects
(Beroukhim et al., 2010). The convergence of several biomarkers around the 1.4-1.5 HR range
suggests a coherent biological signal, particularly notable given that genes like CCNEI, a
well-established driver in HGSOC, achieved statistical significance with an HR of 1.33,
validating our analytical approach (Etemadmoghadam et al., 2009). In the context of HGSOC's
genomic complexity, where therapeutic options remain limited and prognosis is challenging to
stratify, biomarkers with HRs exceeding 1.3 could provide clinically actionable information for
patient stratification and treatment planning, especially when combined in multi-gene prognostic

models (Waldron et al., 2014).



From Synthetic Lethality to Therapeutic Translation

Among the tractable targets, a subset such as CDK4 and RAFI aligns with existing drug
portfolios and near-term translational opportunities, whereas others represent long-term
exploratory candidates requiring novel therapeutic development. Translation of these findings
into practice will also demand companion diagnostics capable of robustly identifying
amplification-positive patients. Crucially, our tractability analysis demonstrates that 7
high-priority targets already have approved drugs (KRAS, CDK4, RAFI, ACLY, TXNRDI,
RPL28, NDUFA2), positioning them for near-term translational testing. A further 13 genes with
clinical precedence expand this into a realistic medium-term pipeline, while the remaining novel
candidates (including kinases like MAP3K7 and MARK?) represent the long-horizon exploratory
space. This stratification frames a rational drug development roadmap: immediate translation
with repurposing opportunities, medium-term investment in clinically advanced targets, and
long-term innovation to capture currently intractable biology, see Supplementary Table 2 for a

complete gene to translational impact annotation.

Strengths, Limitations and Future Directions

This study leverages integrative in-silico pipelines and large-scale functional datasets, yet its
reliance on cell line models and absence of orthogonal pharmacological validation underscores
the need for experimental follow-up to substantiate clinical relevance.

While our computational framework identified 735 potent synthetic lethal interactions, the
limited availability of corresponding drugs in pharmacogenomic databases (only 2 of 28
compounds in GDSC) constrained systematic validation. Future experimental work should
prioritise functional CRISPR screens in HGSOC cell lines with defined amplification profiles,
followed by drug sensitivity assays using available inhibitors.

An additional translational avenue is the use of zebrafish xenograft models, which provide a
rapid and tractable in vivo system to test synthetic lethal dependencies under physiological
conditions. With their optical transparency, high fecundity, and established oncology
applications, zebrafish larvae permit real-time monitoring of tumour growth, dissemination, and
angiogenesis following implantation of human ovarian cancer cells. While few of the
pharmacological agents implicated in our screen have been systematically evaluated for

tolerability in zebrafish, prior studies have successfully applied the model to interrogate



pathways relevant to our targets (Wei ef al., 2022; Madakashira et al., 2024). This suggests that

zebrafish assays could provide a pragmatic intermediate step, allowing rapid prioritisation of
tractable synthetic lethal pairs under controlled drug exposure, generating functional evidence to

de-risk subsequent mammalian validation studies.

Multi-Cancer Pipeline Applicability

While the pipeline was optimised for HGSOC, its modular design suggests it can be readily
generalised to other cancers characterised by recurrent copy number alterations and synthetic
lethal dependencies, such as triple-negative breast cancer, squamous lung carcinoma, and
high-grade glioma, where chromosomal instability and DNA-damage response vulnerabilities are

similarly pervasive (Mirchia et al., 2019; Joshi et al., 2021; Silvestri et al., 2022).

Conclusion

This work establishes a copy-number—centred framework for uncovering synthetic lethal
vulnerabilities in HGSOC, moving beyond canonical mutation-driven paradigms to highlight
oncogene amplifications and collateral dependencies as therapeutically actionable features. By
integrating SCNA-—protein regression, CRISPR dependency profiling, tractability scoring and
survival analysis, the pipeline delineates a spectrum of candidates ranging from near-term
repurposing opportunities (e.g. CDK4, RAF1, KRAS) to longer-term exploratory targets requiring
novel drug development. Although the effect sizes observed are modest, they are biologically
coherent within a polygenic CNA landscape and clinically relevant when aggregated into
multi-gene models. The limitations inherent to in-silico analyses underscore the importance of
orthogonal validation, including functional CRISPR assays and zebrafish xenografts as
intermediate models. More broadly, the modular design enables extension of this framework to
other SCNA-dominated cancers such as TNBC, squamous lung carcinoma, and glioma, offering

a generalisable route to prioritise synthetic lethal interactions for translational oncology.
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Appendices

Supplementary Figure 1
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Supplementary Figure 1: Distribution of GISTIC CNA Scores in TCGA HGSOC.
Bar plot showing the frequency of copy number alteration (CNA) events across all genes in the TCGA high-grade
serous ovarian cancer (HGSOC) cohort. CNA states were derived from GISTIC2.0 scores: —2 (deep deletion), —1
(shallow deletion), 0 (diploid), +1 (low-level gain), and +2 (high-level amplification). The majority of events fall
within shallow deletion (1), diploid (0), and low-level gain (+1) categories, with fewer deep deletions and

high-level amplifications observed.

Supplementary Table 1

Supplementary Table 1: Annotation of Datasets Used in This Study

Dataset

TCGA Copy
Number

Alterations

Source

TCGA
PanCancer Atlas

(via cBioPortal)

File Name Description

data_cna.txt

Gene-level
GISTIC2.0 scores
(-2 to +2) across
562 HGSOC

patient samples.

Cell Lines

Available

N/A




TCGA
Protein
Expression

(RPPA)

TCGA
PanCancer Atlas

(via cBioPortal)

data_protein_quantificat

ion.txt

Normalised RPPA

expression for
selected proteins
in HGSOC

tumours

N/A

Cell Line
Metadata

DepMap

Annotations

cell lines in High-Grade
Serous Ovarian

Cancer.csv

Used to ensure
only HGSOC cell
lines were
subsetted from

DepMap files.

JHOS2, OVMIU ,
OVCARS,
SNUI119,
TYKNU, HEY,
CAOV4,
NIHOVCARS3,
COV318,
HEYAS,
OVSAHO,
OVCARS,
FUOVI,
KURAMOCHI,
OAW28, 59M,
COV362, JHOS4,
ONCODG],
PEA1, OVKATE,
OVCAR3,
CAOV3

PureCN
Values

(DepMap)

DepMap Public
24Q4

OmicsAbsoluteCNGene.csv

Absolute  CNA
data for genes in

HGSOC tumours

JHOS2, OVMIU,
OVCARS,
SNU119,
TYKNU, HEY,
CAOV4,
NIHOVCAR3,
COV318,
HEYAS,
OVSAHO,
OVCARS,
FUOVI,
KURAMOCHI,
OAW28, 59M,




COV362, JHOS4,
ONCODGL,
PEA1, OVKATE

CRISPR
Dependency

Scores

DepMap

(DEMETER2/A

vana)

CRISPRGeneEffect.csv

Gene dependency
scores from
pooled CRISPR
screens in cancer

cell lines

JHOS2, OVMIU,
OVCARS,
TYKNU, HEY,
CAOV4,
NIHOVCARS3,
COV318,
HEYAS,
OVCARS,
KURAMOCHI,
OAW28, 59M,
COV362, JHOS4,
CAOV3,
ONCODGI,
PEAL
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Supplementary Figure 2: Cross-Validation of TCGA CNA-Protein Hits in HGSOC Cell Lines.
Venn diagrams comparing the 737 TCGA genes with significant CNA—protein associations (p < 0.05) to genes
altered in DepMap HGSOC cell lines. (Left) Amplifications were defined as absolute copy number > 6, observed in
>3 lines (n = 4,556). This analysis identified 325 overlapping genes supported in both TCGA tumours and cell lines.
(Right) Deletions were defined as absolute copy number < 1, observed in >3 lines (n = 42). No overlap with the
TCGA significant set was detected.




Supplementary Figure 3
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Supplementary Figure 3: Top shared protein interactors across synthetic-lethal pairs.

Bar chart showing the 20 most frequent shared protein interactors among the representative biomarker—target pairs
(n="735). Bar length denotes the number of SL pairs in which each interactor is shared. TP53 and MYC, canonical
tumour suppressor and oncogenic regulator are highlighted, reflecting their recurrent appearance across multiple SL
relationships. Using BioGRID (>850k PPIs), only 24 pairs (3.3%) had a direct physical interaction, whereas 620
pairs (84.4%) shared >1 indirect interactor, indicating extensive network-level connectivity among SL candidates.



Supplementary Table 2

Supplementary Table 2: Tractability Classification of Synthetic Lethal Target Genes

Tier 1: Clinical Translation Ready (7 targets)

Genes with approved drugs demonstrating immediate therapeutic potential

Gene Gene Name Primary Drug Representative SM AB
Symbol Function Status Drugs Tractability = Tractability
KRAS KRAS Oncogenic Approved | AMG 510 Clinical High
proto-oncogene | signalling (Sotorasib), Precedence Confidence
MRTX849
(Adagrasib)
CDK4 Cyclin-depende | Cell cycle Approved | Palbociclib, Clinical Unknown
nt kinase 4 regulation Ribociclib, Precedence
Abemaciclib
RAF1 Raf-1 MAPK Approved | Sorafenib Clinical High
proto-oncogene | pathway kinase Precedence Confidence
ACLY ATP citrate Metabolic Approved | Bempedoic acid Clinical High
lyase enzyme Precedence Confidence
TXNRD1 | Thioredoxin Redox Approved | Auranofin Clinical Unknown
reductase | homeostasis Precedence
NDUFA2 | NADH Mitochondrial | Approved | Various Clinical High
dehydrogenase | respiration Precedence Confidence
subunit
RPL28 Ribosomal Protein Approved | Homoharringtonine Clinical Unknown
protein L28 synthesis Precedence




Tier 2: Pipeline Ready (6 targets)

Genes with strong clinical precedence in advanced trials

Gene Name

Primary

Function

Clinical
Status

SM
Tractability

AB
Tractability

Strategic Value

RELA RelA (p65 NF-xB | Transcription | Advanced | Clinical Unknown Inflammation-ca
subunit) factor Clinical Precedence ncer nexus
targeting
BIRC2 Baculoviral IAP Apoptosis Advanced | Clinical Unknown Direct apoptosis
repeat 2 inhibitor Clinical Precedence pathway
modulation
CCND1 Cyclin D1 Cell cycle Advanced | Clinical Unknown G1/S checkpoint
regulator Clinical Precedence control
MEN1 Menin Tumour Phase 1 Clinical Unknown Epigenetic
suppressor Clinical Precedence regulation
KMT2A Lysine Histone Phase 1 Clinical Unknown Chromatin
methyltransferase | methylation Clinical Precedence remodelling
2A target
METAP1 | Methionyl Protein Advanced | Clinical Medium-Low | Novel
aminopeptidase 1 processing Clinical Precedence Confidence mechanism

exploitation




Tier 3: Discovery Highlights (Multi-Modal Opportunities) (27 targets)
Genes tractable through multiple modalities with high biological significance

Tier 3A: High-Confidence Multi-Modal (20 targets)
Both small molecule and high-confidence antibody tractable

Gene Name Primary SM AB Biological
Function Tractability Tractability Significance
MAP3K?7 Mitogen-activated Kinase Discovery High Stress response
protein kinase kinase signalling Precedence Confidence pathway
kinase 7 regulation
MARK2 MAP/microtubule Protein kinase Discovery High Microtubule
affinity regulating Precedence Confidence dynamics control
kinase 2
ILK Integrin-linked kinase Cell adhesion Discovery High Cell survival and
kinase Precedence Confidence adhesion
G6PD Glucose-6-phosphate Metabolic Discovery High Glucose
dehydrogenase enzyme Precedence Confidence metabolism
regulation
RICTOR RPTOR independent mTOR complex | Discovery High Growth signaling
companion of MTOR component Precedence Confidence control
RAC1 Rac family small Small GTPase Discovery High Cytoskeleton and
GTPase 1 Precedence Confidence motility
WWTR1 WW domain containing | Transcription Discovery High Hippo pathway
transcription regulator 1 | cofactor Precedence Confidence regulation
VPS4B Vacuolar protein sorting | Vesicle Discovery High Autophagy
4 homolog B trafficking Precedence Confidence regulation
ARID2 AT-rich interaction Chromatin Discovery High SWI/SNF
domain 2 remodelling Precedence Confidence complex
component
BRPF1 Bromodomain and PHD | Epigenetic Discovery High Histone
finger containing 1 regulator Precedence Confidence acetylation




XPR1 Xenotropic and Phosphate Discovery High Phosphate
polytropic retrovirus exporter Precedence Confidence homeostasis
receptor 1
YTHDC1 YTH domain containing | RNA binding Discovery High mRNA
1 protein Precedence Confidence processing
TDG Thymine DNA DNA repair Discovery High Base excision
glycosylase enzyme Precedence Confidence repair
TARM1 T cell receptor Membrane Unknown High T cell signalling
associated adaptor Confidence
transmembrane adaptor
1
STXBP3 Syntaxin binding Vesicle Unknown High SNARE complex
protein 3 trafficking Confidence regulation
STX4 Syntaxin 4 Vesicle fusion Unknown High Membrane
Confidence trafficking
SNAP23 Synaptosome associated | SNARE protein | Unknown High Vesicle
protein 23 Confidence exocytosis
SLC4A7 Solute carrier family 4 Ion transporter Unknown High pH homeostasis
member 7 Confidence
SLC7A1 Solute carrier family 7 Amino acid Unknown High Arginine
member 1 transporter Confidence transport
SLC44A3 Solute carrier family 44 | Choline Unknown High Choline
member 3 transporter Confidence metabolism

Tier 3B: Promising Discovery Targets (7 targets)

High biological significance with tractability potential

Gene Name

Primary Function

SM

Tractability

AB
Tractability

CCNE1

Cyclin E1

Cell cycle regulator

Discovery
Precedence

Unknown

S-phase
progression
control




APC APC regulator of | Tumour suppressor | Discovery High Wnt pathway
WNT signalling Precedence Confidence regulation
ALDOC Aldolase, Glycolytic enzyme | Predicted High Metabolic
fructose-bisphosphat Tractable Confidence reprogramming
eC
KDM2A Lysine demethylase | Histone Discovery Unknown Chromatin
2A demethylase Precedence modification
KMT5A Lysine Histone Discovery Unknown H4K20
methyltransferase methyltransferase Precedence methylation
5A
L3MBTL3 L3MBTL  histone | Chromatin reader Discovery Unknown Epigenetic
methyl-lysine Precedence regulation
binding protein 3
SMARCA4 | SWI/SNF  related | Chromatin Discovery Unknown SWI/SNF
chromatin remodeller Precedence complex ATPase
remodelling
complex subunit
Legend:
e SM: Small Molecule tractability
e AB: Antibody tractability
e Clinical Precedence: Compounds in clinical trials or approved
e Discovery Precedence: Known binding sites or structural information
e Predicted Tractable: Computational prediction of druggability
e High/Medium/Low Confidence: Based on subcellular localisation and accessibility scores

Data Source: Open Targets Platform tractability assessment for synthetic lethal target genes identified from
HGSOC dependency screens.
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