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Scientific Abstract 
High-grade serous ovarian cancer (HGSOC) is the most prevalent and aggressive subtype of 

ovarian cancer, characterised by late-stage diagnosis and poor prognosis due to frequent relapse 

following chemotherapy and lack of effective screening strategies. There is an urgent global need 

for novel, targeted, and personalised therapeutic strategies to improve patient outcomes. This 

project employs a synthetic lethality framework to identify biomarkers and therapeutic 

vulnerabilities specific to HGSOC. Synthetic lethality exploits gene pairs whose concurrent 

disruption selectively induces cancer cell death while sparing normal cells, thereby revealing 

potential precision drug targets. 

We integrate multi-omics data from ovarian cancer cell lines and patient tumours to identify 

recurrent genetic alterations indicative of cancer-specific weaknesses. Leveraging large-scale 

CRISPR screening datasets, we systematically identify essential genes whose perturbation is 

lethal in the context of these alterations. Subsequently, candidate therapeutic targets are 

prioritised based on existing drug availability or feasibility of drug development. 

The outcome will be a curated list of clinically actionable targets and combination therapy 

candidates designed to inform precision oncology approaches for HGSOC. By exploiting 

cancer-specific vulnerabilities, this research aims to contribute to improved treatment paradigms, 

enhanced quality of life and prolonged survival for patients afflicted with high-grade serous 

ovarian cancer. 
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Introduction 
Clinical Challenges of High-Grade Serous Ovarian Cancer 

High-grade serous ovarian cancer (HGSOC) is the most common and lethal subtype of ovarian 

cancer (Punzón-Jiménez et al., 2022). Due to vague early symptoms, most HGSOC cases present 

at advanced stages (III/IV), resulting in an aggressive disease course with poor prognosis 

(Punzón-Jiménez et al., 2022). Standard treatment consists of maximal cytoreductive surgery 

followed by platinum/taxane chemotherapy. While this approach often induces an initial 

remission, the cancer recurs in ~70–80% of patients and eventually develops resistance to 

chemotherapy (Pignata et al., 2017). Consequently, the five-year survival rate for advanced 

HGSOC lingers around 30%, a statistic that has improved little in recent decades (He, Li and 

Zhang, 2023). Molecularly, HGSOC tumours are characterised by pervasive chromosomal 

instability and extensive copy number alterations, leading to heightened inter- and intra-tumoural 

heterogeneity (Kleinmanns and Bjørge, 2024). These clinical and molecular challenges 

underscore an urgent need for new therapeutic strategies that go beyond the one-size-fits-all 

approach of surgery and cytotoxic chemotherapy. In particular, precision oncology approaches 

are sought to exploit tumour-specific vulnerabilities and improve outcomes for this deadly 

gynaecological cancer. 

 

Synthetic Lethality: A Precision Oncology Approach 

One promising avenue for mechanistically grounded, tumour-selective therapy is the concept of 

synthetic lethality. Synthetic lethality describes a scenario in which the concurrent perturbation 

of two genes is lethal to cells, whereas disruption of either gene alone is survivable (Kaelin, 

2005; Shieh, 2022). In cancer, this implies that if a tumour harbours a particular genetic 

alteration (mutation, deletion or amplification), inhibition of a partner gene essential only in that 

altered context can trigger selective cancer cell death while sparing normal cells (Kaelin, 2005; 

Shieh, 2022). This approach directly targets “cancer vulnerabilities” rooted in the tumour’s 

genotype. A hallmark example is the lethal interplay between BRCA1/2 loss and 

poly(ADP-ribose) polymerase (PARP) inhibition, tumours with BRCA mutations (deficient in 

homologous recombination DNA repair) are sensitive to PARP inhibitors, which induce 

irreparable DNA damage in the absence of functional BRCA, killing the cancer while normal 

cells with intact BRCA are unharmed (Helleday, 2011; Shieh, 2022). This synthetic lethal 
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strategy led to the first FDA-approved targeted therapy for HGSOC – PARP inhibitors in patients 

with BRCA mutations or homologous recombination deficiency (Ragupathi et al., 2023). This 

validated the broader principle that leveraging tumour-specific genetic defects can yield 

effective, less toxic treatments. Building on this success, multiple synthetic lethal interactions are 

under active investigation. For instance, inhibiting DNA damage response kinases like ATR and 

CHK1 can preferentially sensitise cancer cells to DNA damage or PARP blockade and such 

agents are being tested in combination trials (Kleinmanns and Bjørge, 2024). Overall, the 

synthetic lethality paradigm offers a rational framework to discover actionable cancer 

vulnerabilities and thus, by pinpointing gene pairs where one is frequently altered in HGSOC 

and the other can be targeted, we can identify novel therapeutic opportunities grounded in 

tumour biology. 

 

Integrative Framework for Biomarker Discovery and Synthetic Lethal Screening 

In light of HGSOC’s genomic complexity, our research deploys an integrative multi-omics 

strategy to systematically uncover and validate synthetic lethal interactions with translational 

potential. We begin by identifying candidate biomarkers, which are genes recurrently amplified 

or deleted in HGSOC, through analysis of large patient tumour datasets (e.g. TCGA copy 

number and proteomic profiles). Such aberrations are hypothesised to represent cancer-specific 

vulnerabilities which may be exploited. We then overlay functional genomic data from 

large-scale CRISPR-Cas9 knockout screens in HGSOC cancer cell lines to find genes that 

become essential only in the presence of those HGSOC-specific alterations. This unbiased 

in-silico screening approach, similar to prior large-scale dependency analyses, enables the 

nomination of putative synthetic lethal gene pairs (Zhan et al., 2019). To prioritise pairs with 

clinical relevance, we incorporate pharmacogenomic and druggability data, favouring targets for 

which small-molecule inhibitors or biologics exist or can be developed. 

Notably, we introduce a novel multi-agent literature mining platform, “OncoSynth,” to rigorously 

validate and contextualise each candidate synthetic lethal interaction. OncoSynth autonomously 

gathers evidence from biomedical literature, drug databases and clinical trial registries for a 

given gene pair, integrating information on any reported co-lethality, known drug targets and 

clinical studies, and then ranks the pair’s therapeutic potential. This automated, AI-driven tool is 

a key innovation of our framework and aids in identifying whether shortlisted synthetic lethal 
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pairs are supported by existing evidence and mechanistic rationale, reinforcing their translational 

promise. 

This project, funded by Breakthrough Cancer Research, exemplifies a bench-to-bedside 

approach. By uniting genomic biomarkers with functional dependency screens, we aim to create 

a pipeline for discovering HGSOC-specific lethal gene interactions that can be readily translated 

into precision therapies. In the following report, we detail this approach and highlight how 

harnessing synthetic lethality can expand the therapeutic arsenal against HGSOC’s otherwise 

treatment-refractory biology, ultimately striving to improve survival and hope for patients with 

this aggressive cancer. 

 

Materials and Methods 
Data Acquisition 

To identify candidate synthetic lethal interactions in HGSOC, we integrated clinical, genomic, 

proteomic and functional dependency datasets from The Cancer Genome Atlas (TCGA) and the 

Cancer Dependency Map (DepMap). TCGA data were downloaded from cBioPortal (study ID: 

ov_tcga_pan_can_atlas_2018), including gene-level somatic copy number alterations 

(CNAs) inferred using GISTIC2 (scores: -2 to +2)  (see Supplementary Figure 1) and matched 

reverse-phase protein array (RPPA) profiles.  

The RPPA data were validated to originate from the iTRAQ-based CPTAC proteomics dataset 

described by (Zhang et al., 2016). Clinical data is also present in the 

ov_tcga_pan_can_atlas_2018 folder, named data_clinical_patient.txt. 

To assess gene essentiality, we used CRISPR-Cas9 dependency scores from the DepMap 24Q1 

Chronos release, spanning approximately 1100 cell lines. A curated panel of 23 ovarian cancer 

cell lines was obtained from the DepMap Context resource for High-Grade Serous Ovarian 

Cancer. Of these, only 21 cell lines had available copy number data and were retained for 

CNA-based analyses (OVCAR4 and CAOV3 were not present in the CNA matrix). For 

CRISPR-based dependency analysis, only 18 of the 23 lines had available gene effect scores 

(SNU119, OVSAHO, OVCAR4, FUOV1, and OVKATE were not present in the Chronos gene 

effect matrix). An annotation of all datasets used in this study can be viewed in Supplementary 

Table 1. 

 

 



 

 

 10 

 

Candidate Biomarker Filtering in TCGA Tumours 

Somatic copy number alterations (CNAs) were obtained as discrete GISTIC2 scores ranging 

from –2 (deep deletion) to +2 (high-level amplification). Genes were retained for downstream 

analysis if they were amplified or deleted in at least 5% of TCGA HGSOC samples. 

To enable integration with proteomic profiles, the CNA gene list was aligned with RPPA protein 

expression data using Entrez Gene IDs. Protein identifiers in the RPPA matrix (HGNC symbols 

and aliases) were mapped to Entrez IDs using the HGNC 

gene_with_protein_product.txt reference file from HGNC. Genes lacking a valid 

Entrez mapping or protein expression data were excluded. 

 

CNA–Protein Integration and Statistical Modelling 

To evaluate the functional relevance of somatic CNAs, we assessed whether gene amplifications 

or deletions were associated with consistent changes in protein expression across TCGA HGSOC 

samples. CNA scores and RPPA values were merged for each gene and sample, retaining only 

genes with matched data in at least six patients. For each gene, a univariate linear regression 

model was fitted: 

Protein ~ β₀ + β₁ × CNA + ε 

where CNA was treated as an ordinal variable (–2 to +2). The slope coefficient β₁ estimated the 

direction and strength of the association and statistical significance was assessed using the 

corresponding p-value. Genes were classified as significant if the CNA–protein linear regression 

returned a p-value < 0.05, irrespective of slope direction. This approach captures any consistent 

association between CNA state and protein abundance. 

 

Validation of CNA–Protein Biomarkers in Ovarian Cancer Cell Lines 

To assess whether the CNA–protein associations observed in patient tumours were recapitulated 

in experimental models, we analysed absolute copy number data from the DepMap 24Q4 release. 

Twenty-one HGSOC cell lines were retained after filtering, with gene identifiers harmonised by 

Entrez IDs to enable integration with TCGA-derived candidates. Thresholds for deep deletion 

(CN < 1) and high-level amplification (CN ≥ 6) were applied. Initially, genes were considered 

altered if at least 5% of independent cell lines (n ≥ 2) exhibited the event, however to increase 
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statistical rigor, this was increased to 3 independent cell lines. These lists were then intersected 

with the tumour-derived CNA–protein hits to obtain a subset of biomarkers with support in both 

primary tumours and cell line models. 

All steps involved in candidate gene filtering from TCGA and DepMap datasets, including CNA 

thresholding, recurrence criteria and proteomic alignment are visually illustrated in Figure 1. 

 

Regression-Based Synthetic Lethality Screening in HGSOC Cell Lines 

Synthetic lethal interactions were inferred by modelling CRISPR gene dependency scores as a 

function of biomarker copy number status in DepMap HGSOC cell lines. To reduce redundancy, 

biomarkers with identical CNA profiles across all lines were clustered. The first gene in a cluster 

was temporarily selected as the representative gene of that cluster. 

For each biomarker–target pair, ordinary least squares (OLS) regression was fitted with gene 

dependency as the outcome and biomarker CNA as the predictor. Regression coefficients were 

estimated with heteroskedasticity-consistent (HC3) variance adjustment. Effect size was 

calculated as the slope β standardised by the variance of dependency scores, reflecting the 

magnitude of dependency change per unit CNA (i.e. Cohen’s D).  

A multiple-testing correction was applied using the Benjamini–Hochberg procedure. Pairs were 

classified as candidate SL interactions if they met three conditions: FDR < 0.05, effect size < 0, 

and predicted dependency at CNA = 2 > –0.6 (to exclude broadly essential genes). A potency 

filter was then applied, requiring the difference between observed mean dependency at CNA ≥ 6 

and the regression-predicted dependency at CNA = 2 (delta effect) to be ≤ –0.2, ensuring that 

only amplified contexts that showed enhanced vulnerability were retained. The equation can be 

viewed below. 

Dependencyi = β₀ + β₁ · CNAi + εi 

where Dependencyi is the CRISPR gene effect score in cell line i, CNAi is the copy number 

value of the biomarker in the same line.  

Delta is defined as: 

Δ = CNA ≥ 6 - ŷCNA=2 𝑚𝑒𝑎𝑛(𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦)

with ŷCNA=2 = β₀ + 2β₁ being the model-predicted dependency at CNA = 2. 
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Figure 1: Workflow for Synthetic Lethality Discovery in Amplified HGSOC Genes. 
A schematic overview of the analytical pipeline used to identify synthetic lethal interactions in high-grade serous 
ovarian cancer (HGSOC). The workflow integrates TCGA-derived copy number and proteomic data to identify 
amplification-linked genes, which are then validated in DepMap HGSOC cell lines. Candidate biomarkers are 
filtered by recurrence, protein expression association and cross-cohort concordance. 
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AI-Based Synthetic Lethality Literature Mining 

Agent Design and Purpose 

To systematically evaluate whether candidate synthetic lethal interactions identified in silico are 

supported by existing biomedical evidence, we developed OncoSynth, a multi-agent framework 

for automated literature and database mining. The design goal was to prioritise  biomarker–target 

gene pairs with the strongest therapeutic and translational potential by integrating evidence 

across PubMed, Open Targets and ClinicalTrials.gov. Unlike single-source approaches, the 

multi-agent framework allows parallelised evidence gathering followed by structured synthesis 

and confidence scoring, ensuring both breadth and reproducibility in the evaluation of candidate 

pairs. 

 

Input Parameters and Execution Modes 

OncoSynth accepts gene pairs defined as a biomarker and its putative synthetic lethal partner. 

Two execution modes were implemented. In batch mode, gene pairs are imported from a 

structured CSV file and processed sequentially, generating individual reports for each pair. In 

interactive mode, biomarker–target pairs can be entered directly via the command line interface 

(CLI), enabling real-time exploration of individual hypotheses. Both modes route inputs through 

the same underlying pipeline, ensuring consistency of evidence retrieval and report generation. 

 

Multi-Agent Architecture 

The system was constructed in Python using the CrewAI framework, with each module 

encapsulated as a specialised agent assigned a discrete role. A PubMed search agent interrogates 

the biomedical literature for co-occurrence of the biomarker and target, prioritising abstracts 

explicitly mentioning synthetic lethality. Two other independent PubMed literature agents assess 

the broader oncogenic context of each gene individually, with emphasis on ovarian cancer. Drug 

annotation is performed by an Open Targets agent, which retrieves tractability scores, known 

inhibitors, mechanisms of action and clinical status. Clinical relevance is further evaluated by a 

ClinicalTrials.gov agent, which identifies interventional trials and extracts study phase, 

recruitment status and condition type. 

The outputs of these retrieval agents are synthesised by a biomedical analyst agent, which 

integrates the evidence with attention to cancer specificity and mechanistic plausibility. A 
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deterministic confidence scoring tool then applies a weighted rubric, assigning up to 40 points 

for direct synthetic lethality evidence, 30 for druggability, 15 for clinical trial support and 15 for 

cancer relevance. Reports are finally authored by a technical writer agent, which converts the 

structured JSON evidence into a markdown report formatted for clinical and research audiences. 

 

Output and Scoring Framework 

For each gene pair, OncoSynth produces a structured report containing background information, 

supporting synthetic lethality evidence, drug target data, clinical trial annotations, translational 

implications, and references with PubMed identifiers. Reports are prefixed with a confidence 

score ranging from 0 to 100, which is calculated reproducibly by the deterministic scoring agent. 

Scores below 50 are labelled as low-confidence, while scores of 50 or higher are designated 

high-confidence.  

 

Software and Tools 

The agent was implemented in Python using the following packages: crewAI, Bio.Entrez, 

langchain-openai, pydantic and requests. The PubMed interface uses NCBI Entrez 

E-utilities, the drug module uses the Open Targets v4 GraphQL API, and clinical trials are 

fetched via ClinicalTrials.gov v2 REST API. 

All source code, including execution scripts for batch (batch.py), interactive 

(interactive.py) modes, deterministic scoring functions and logging utilities, is available 

upon request. The full agent architecture, including input-output flow and modular agent roles, is 

summarised in Figure 2. 
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Figure 2: Architecture of the OncoSynth Multi-Agent Literature Mining System. 
Schematic overview of the OncoSynth framework for synthetic lethality evidence retrieval and integration. 
Independent agents query PubMed for biomarker–target co-occurrence and cancer-specific literature, Open Targets 
for druggability and therapeutic annotations, and ClinicalTrials.gov for trial evidence. Outputs from these retrieval 
modules are passed to an analyst agent, which synthesises the findings, and a deterministic scoring agent, which 
assigns a reproducible confidence score (0–100) across four evidence domains. A technical writer agent generates 
the final structured markdown report, which is output in batch or interactive execution modes.  
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Protein–Protein Interaction Validation of Synthetic Lethal Pairs (BioGRID) 

To assess whether synthetic lethal pairs identified from regression screening were biologically 

supported by protein–protein interaction (PPI) networks, we integrated results with BioGRID 

(release 4.4.241). BioGRID tab-delimited interaction data were filtered to retain only physical 

interactions between human proteins (taxon ID 9606) and to exclude self-interactions. The 

resulting dataset comprised 862,452 unique interaction pairs involving 19,995 unique human 

genes. 

For each biomarker–target pair identified as a potent SL hit, we calculated several measures of 

network connectivity. First, we determined whether the biomarker and target directly interacted 

in BioGRID. Second, we computed the number of total interactors for each gene, the number of 

shared interactors and the Jaccard index of overlap. To evaluate whether observed overlap 

exceeded random expectation, a Fisher’s exact test (FET) was applied to a contingency table of 

shared versus unique interactors, yielding a log-transformed p-value as the “FET PPI overlap” 

statistic. Biomarker clusters containing multiple co-amplified genes were resolved by selecting a 

single representative gene per cluster, prioritising non-ORF symbols and genes with higher PPI 

connectivity. The representative biomarker, along with PPI-derived overlap metrics, was merged 

back into the potent SL hit set, producing a final “PPI-validated” SL dataset. 

 

Network and Pathway Analysis of Potent Synthetic Lethal Targets (STRING & g:Profiler) 

To investigate whether potent synthetic lethal (SL) pairs were supported by known functional 

networks in a second database, we evaluated both direct protein–protein interactions (PPIs) and 

biological pathway enrichment in STRING. Potent SL hits with HGNC annotations were 

cross-referenced with the STRING v12.0 database. STRING protein links were filtered to retain 

human interactions with a combined confidence score ≥400, corresponding to medium 

confidence. For each biomarker–target pair, we determined whether a direct PPI was supported 

under this threshold and summarised the number of pairs validated. 

To assess biological coherence of SL genes, we conducted pathway enrichment analysis using 

g:Profiler (v1.0). Separate enrichment runs were performed for amplified biomarkers and for SL 

targets, testing against Gene Ontology Biological Process (GO:BP) terms. Significant terms were 

defined as those meeting g:Profiler’s multiple-testing correction (adjusted p < 0.05). To visualise 

enrichment patterns, we network-based chord diagrams where pathways and genes were 
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collapsed into broader functional categories (e.g. cell cycle, chromatin organisation, 

mitochondrial translation). 

 

Benchmarking Synthetic Lethal Pairs Against Public Databases 

To assess whether the potent synthetic lethal (SL) pairs identified from regression screening in 

HGSOC cell lines had prior evidence, we benchmarked them against two public SL resources: 

SynLethDB and ISLE. SynLethDB aggregates experimentally validated, literature-curated, and 

computationally predicted SL interactions, providing a comprehensive knowledgebase. In 

contrast, ISLE is a computational pipeline that infers clinically relevant SL pairs by integrating 

tumour molecular profiles, patient survival data and evolutionary conservation (Lee et al., 2018; 

Wang et al., 2022). 

For each biomarker–target pair, gene symbols were normalised to uppercase HGNC identifiers. 

Pairs were then queried in both databases in either direction (biomarker–target or 

target–biomarker). Binary flags were assigned for presence in SynLethDB and ISLE. A final 

novelty indicator was created for pairs absent from both resources. The merged benchmarking 

results were exported for integration into downstream translational reporting. 

 

Clinical and Genomic Data Processing 

We analysed The Cancer Genome Atlas high-grade serous ovarian carcinoma (TCGA-OV, 

PanCanAtlas 2018) cohort to assess the prognostic relevance of amplification events in SL 

biomarkers. The unique biomarker candidates from the biomarker-target pairs were mapped to 

TCGA GISTIC2 copy-number calls using Entrez ID–HGNC cross-referencing. Deep 

amplifications were defined as GISTIC score = 2, consistent with the binary threshold applied in 

prior analyses. Clinical annotations were retrieved from cBioPortal, including overall survival 

(OS) and progression-free survival (PFS) time and status. Patient IDs were harmonised across 

genomic and clinical datasets and only patients with both CNA and clinical data available were 

retained. Thereafter, only cases with age information were retained for Cox regression 

modelling. 
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Survival Modelling 

Univariate and age-adjusted Cox proportional hazards models were fitted separately for OS and 

PFS. Models were restricted to biomarkers with ≥50 patients and at least five individuals in both 

amplified and non-amplified groups. Hazard ratios (HRs), 95% confidence intervals (CIs) and 

p-values were extracted for each biomarker. Benjamini–Hochberg correction was applied across 

all tests to control the false discovery rate (FDR).​

 

Synthetic Lethal Target Prioritisation and Drug Tractability Analysis 

We assessed the therapeutic potential of unique synthetic lethal target genes from the 

biomarker-target pairs using the Open Targets Platform API to systematically evaluate drug 

tractability across multiple therapeutic modalities. Tractability scores were computed for small 

molecules (8 buckets: approved drugs, clinical precedence, discovery precedence, predicted 

tractable), antibodies (9 buckets: clinical precedence, high/medium confidence based on protein 

localisation), and other clinical modalities (3 buckets). Each gene received binary scores across 

tractability categories, which were aggregated into bucket sums and classified into hierarchical 

categories: Clinical Precedence > Discovery Precedence > Predicted Tractable > Unknown. 

 

Drug-Target Mapping and GDSC Integration 

Known drugs for tractable targets were extracted from Open Targets and cross-referenced with 

the Genomics of Drug Sensitivity in Cancer (GDSC) pharmacogenomics database. Drug names 

were manually curated to resolve nomenclature inconsistencies between databases (e.g., 

"SORAFENIB TOSYLATE" → "SORAFENIB"). We filtered unique compounds tested in 

HGSOC cell lines, identifying overlapping drugs available for correlation analysis with synthetic 

lethal pairs. 

 

Copy Number-Drug Sensitivity Correlation Analysis 

For validation of synthetic lethal relationships, we correlated biomarker copy number 

amplification (DepMap absolute copy number ≥6) with drug sensitivity (GDSC AUC values) 

using Pearson correlation. Cell line identifiers (ARXSPAN IDs) were standardised across 

datasets and analysis was restricted to pairs with ≥3 overlapping cell lines. Statistical 
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significance was assessed using two-tailed tests, with correlation strength thresholds of |r| > 0.7 

for strong relationships. 

 

Results 

Identification of CNA–Protein Associations in TCGA HGSOC 

To prioritise candidate biomarkers, we first applied a prevalence filter requiring copy number 

alterations in at least 5% of tumours in the TCGA HGSOC cohort (n = 572 x 0.05  29). This ≈

yielded 3,334 amplified and 359 deleted genes, corresponding to 3,693 unique candidates. 

Integration with RPPA profiles was performed by harmonising gene identifiers through 

HGNC-to-Entrez mappings, resulting in 1,111 genes with matched CNA and protein expression 

data across 119 overlapping patient samples. 

We next evaluated the impact of CNAs on protein abundance using univariate linear regression 

models, treating the discrete GISTIC scores (–2 to +2) as ordinal predictors of protein levels. Of 

the 1,111 evaluable genes, 737 displayed significant CNA–protein associations at a nominal 

threshold of p < 0.05. These genes, in which copy number state consistently predicted protein 

abundance, represent the filtered set of functionally supported biomarkers that were carried 

forward for downstream cross-validation in ovarian cancer cell line datasets. 

 

Cell Line Support for Amplified Biomarkers 

Across the 21 HGSOC cell lines, this filtering identified 4,556 amplified genes and 42 deleted 

genes. Comparison with the 737 tumour-derived candidates revealed 325 overlapping amplified 

genes, whereas no deletions passed the prevalence threshold in both datasets (see Supplementary 

Figure 2). These 325 amplified genes were designated as the cross-validated biomarker set and 

prioritised for downstream synthetic lethality screening. The filtering pipeline and resulting 

genes can be viewed in Table 1. 
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Table 1: Sequential Filtering Steps for TCGA–DepMap Integration and Candidate Biomarker Selection 

Filtering Step Number of Genes Remaining 

Initial amplified genes (≥5% patients) - TCGA 3,334 

Initial deleted genes (≥5% patients) - TCGA 359 

Total unique candidate genes 3,693 

Genes with matched proteomics data 1,111 

DepMap significant genes  (regression:  p < 0.05) 737 

Initial amplified genes (≥5% cell lines) - DepMap 4556 

Initial deleted genes (≥5% cell lines) - DepMap 42 

TCGA-validated amplified genes cross-checked in DepMap 325 

TCGA-validated deleted genes cross-checked in DepMap 0 

 

Identification of Potent Synthetic Lethal Interactions 

Across all biomarker–target combinations tested (n ≈ 5.2 × 105), we identified 3,476 pairs with 

FDR < 0.05, of which 1,601 showed negative effect sizes consistent with synthetic lethal 

interactions. Filtering to exclude targets broadly essential in diploid contexts reduced this to 

1,075 “selective” hits. Imposing the potency criterion (delta effect ≤ –0.2) yielded a final set of 

735 potent synthetic lethal interactions. These results demonstrate that regression modelling of 

copy number variation against CRISPR gene effect scores can robustly capture context-specific 

dependencies in HGSOC. The global distribution of regression results and examples of 

biomarker–target interactions are shown in Figure 3. 
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Figure 3: Regression-Based Synthetic Lethality Screening in HGSOC Cell Lines. 
(A) Volcano plot showing the distribution of regression results across ~521,000 biomarker–target tests. The x-axis 
indicates effect size (standardised regression slope, β), and the y-axis shows –log₁₀(FDR). Red points denote 
significant hits (FDR < 0.05 and effect size < 0). 
(B) Example regression plot of CHD7 copy number versus CDK4 dependency score, illustrating a significant 
synthetic lethal interaction. Each point represents a DepMap HGSOC cell line, with regression fit shown in black. 
(C) Example regression plot of NAALADL2 copy number versus RAF1 dependency score, highlighting a second 
representative interaction.  
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Limited Direct Interactions but Widespread Network Overlap 

The processed BioGRID dataset encompassed over 850,000 unique protein interactions. 

Intersection with the potent synthetic lethal set revealed that only 24 biomarker–target pairs 

(3.3%) were supported by direct physical interactions. However, when expanded to 

representative biomarker–target pairs (n = 735), 620 pairs (84.4%) shared at least one common 

interactor, indicating extensive indirect connectivity within the protein interaction network. 

These shared interactors included canonical tumour suppressors and oncogenic regulators such 

as TP53 and MYC, respectively, which recurred across multiple synthetic lethal relationships, 

Supplementary Figure 3. 

Fisher's exact test identified 124 pairs (16.9%) with statistically significant enrichment of shared 

protein interactions (p < 0.05), suggesting that synthetic lethal dependencies are underpinned by 

coherent network modules rather than random associations. The median number of shared 

interactors amongst connected pairs was 6, with Jaccard similarity indices averaging 0.029, 

indicating moderate but meaningful network overlap. Representative biomarker selection within 

amplification clusters ensured that poorly characterised genes did not dominate the analysis 

whilst maintaining biological relevance. 

A panel of key plots can be viewed in Figure 4. 

 

STRING Support and Pathway Enrichment of SL Hits 

At the STRING confidence threshold of 400, 15 biomarker–target pairs were supported by direct 

physical interactions between the two genes. 

Pathway enrichment analysis revealed strong functional clustering of both biomarkers and 

targets. Amplified biomarkers were enriched for pathways associated with molecular transport 

and RNA metabolism, consistent with roles in protein localisation and transcript processing. 

Synthetic lethal target genes were enriched in canonical cancer hallmarks, including cell cycle 

progression, checkpoint regulation, DNA repair and synthesis, chromatin organisation, and 

mitochondrial translation. Additional clusters included pathways related to protein synthesis and 

degradation and stress response and apoptosis. 
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Figure 4: Protein-Protein Interaction Network Analysis Validates Synthetic Lethal Gene Pair Relationships. 
(A) Scatter plot showing the relationship between number of shared protein-protein interactions (PPIs) and Jaccard 
similarity index for 735 representative biomarker–target pairs. Points are coloured by statistical significance (red, 
Fisher's exact test p < 0.05; grey, non-significant). ​
(B) Proportion of synthetic lethal pairs with direct versus indirect protein interactions. ​
(C) Frequency distribution of shared PPI counts, showing the number of gene pairs for each level of network 
connectivity (top 15 categories shown). ​
(D) Summary statistics for the complete dataset. Analysis demonstrates that 84.4% of synthetic lethal pairs share 
protein interactions, with 16.9% showing statistically significant enrichment. Network-mediated relationships 
(indirect interactions) predominate over direct protein–protein contacts (84.4% versus 4.2%), supporting a model 
wherein synthetic lethal dependencies arise through disruption of interconnected functional modules rather than 
direct physical associations. 

 

Predominantly Unestablished Synthetic Lethal Interactions 

Of the 735 potent SL pairs tested, 3 were found exclusively in SynLethDB, 0 were unique to 

ISLE, and 1 pair was reported in both databases. The remaining 731 pairs (99.5%) were absent 

from both resources. This benchmarking step demonstrated that the vast majority of the 

candidate interactions identified in our HGSOC-focused screen represent previously unreported 

synthetic lethal relationships. 
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Clinical Cohort Characteristics 

Among the 558 patients with matched biomarker and clinical data , 330 OS events (59.1%) were 

observed, with a median OS of 33.3 months. For PFS, 407 events (71.3%) occurred, with a 

median of 14.7 months. Biomarker amplification frequencies had a median of 8.4% across the 

cohort.  

 

Cox Regression Outcomes 

Across 201 biomarkers tested, no associations with OS or PFS remained significant after FDR 

correction (FDR < 0.05). However, 9 biomarkers showed nominal significance (adjusted p < 

0.05) in the age-adjusted OS models, including URI1 (HR = 1.41, p = 0.022), ACTN4 (HR = 

1.53, p = 0.028), and CCNE1 (HR = 1.33, p = 0.0498). For PFS, 9 biomarkers reached nominal 

significance, the most notable being ITPR2 (HR = 1.58, p = 0.014) and URI1 (HR = 1.39, p = 

0.021). 

 

Kaplan–Meier Analyses 

Exploratory Kaplan–Meier survival curves were generated for three key biomarkers. CCNE1 

amplification (n=110) was associated with reduced OS (median 38.0 vs 48.1 months, log-rank p 

= 0.0010). ACTN4 amplification (n=51) similarly correlated with worse OS (36.4 vs 47.6 

months, log-rank p = 0.0110). URI1 amplification (n=101) was also strongly associated with 

inferior outcomes (38.0 vs 47.7 months, log-rank p = 0.0001). 

 

Summary 

Although no biomarkers achieved FDR-significant associations, several candidates demonstrated 

consistent nominal signals across OS and PFS, with hazard ratios in the range of 1.3–1.5 and 

amplification frequencies of 8–18%. These include CCNE1, a well-established oncogene in 

HGSOC, along with URI1 and ACTN4, which warrant prioritisation for further validation, see 

Figure 5.  
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Figure 5: Biomarker Survival Analysis In High-Grade Serous Ovarian Carcinoma. 
(A) Volcano plot showing progression-free survival (PFS) analysis of 200 pre-specified biomarkers. Points represent 
individual biomarkers plotted by log₂(hazard ratio) versus -log₁₀(p-value). Red points indicate biomarkers with 
nominal significance (p < 0.05), grey points represent non-significant biomarkers. Horizontal dashed line indicates p 
= 0.05 significance threshold. Vertical dashed lines represent hazard ratio reference thresholds (HR = 0.8 and HR = 
1.25). Significant biomarkers are labelled with gene names. Statistics box shows total biomarkers tested, number 
achieving nominal significance, and median patient sample size.​
(B) Volcano plot showing overall survival (OS) analysis of the same 200 biomarkers. Layout and statistical 
thresholds are identical to panel A. Gene labels indicate biomarkers achieving nominal significance for overall 
survival outcomes.​
(C) Kaplan-Meier curves showing overall survival stratified by CCNE1 amplification status. Red curves represent 
patients with amplified biomarkers, blue curves represent patients without amplification. P-values were calculated 
using the log-rank test. Sample sizes for each group are indicated in the legend. Median survival times are displayed 
in the text box, with "NR" indicating not reached. Shaded areas represent 95% confidence intervals.​
(D) Kaplan-Meier curves showing overall survival stratified by ACTN4 amplification status. Format and statistical 
methods identical to panel C.​
(E) Kaplan-Meier curves showing overall survival stratified by URI1 amplification status. Format and statistical 
methods identical to panel C.​
Grid lines are included in all panels to aid in reading survival probabilities, hazard ratios, and p-values. All analyses 
were performed on the same HGSOC patient cohort with biomarker amplification data available. 
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Therapeutic Tractability Landscape of Synthetic Lethal Targets 

Of 229 synthetic lethal target genes analyzed, 148 (64.6%) demonstrated tractability evidence 

across at least one therapeutic modality. Small molecule tractability was most prevalent, with 7 

targets having approved drugs, 13 showing clinical precedence, and 89 exhibiting discovery 

precedence. For antibody-based therapeutics, 51 targets showed high confidence tractability and 

30 showed medium confidence based on protein localisation and accessibility. Notably, tier 1 

targets with the highest synthetic lethal effect sizes (KRAS, CDK4, RAF1, ACLY, TXNRD1) all 

demonstrated strong small molecule tractability with approved drugs, indicating immediate 

therapeutic relevance. 

 

Limited Drug Availability Constrains Pharmacological Validation 

Cross-referencing of Open Targets drug annotations with GDSC revealed substantial gaps in 

available pharmacological data. Of 28 unique drugs targeting synthetic lethal candidates, only 2 

(7.1%) were available in GDSC: PALBOCICLIB and SORAFENIB. This limitation severely 

constrained our ability to perform systematic correlation analyses between biomarker 

amplification and drug sensitivity. Most absent compounds were recent clinical candidates 

(SOTORASIB, ADAGRASIB, REVUMENIB) or specialized therapeutics not yet incorporated 

into large-scale screening panels. 

 

Proof-of-Concept Validation of CHD7-CDK4 Synthetic Lethality 

We successfully demonstrated proof-of-concept validation for the CHD7-CDK4 synthetic lethal 

relationship using PALBOCICLIB sensitivity data. In 4 high-grade serous ovarian cancer cell 

lines with CHD7 amplification (copy number ≥6), we observed a strong negative correlation (r = 

-0.763, p = 0.237) between CHD7 copy number and PALBOCICLIB AUC values, indicating that 

higher CHD7 amplification associates with increased CDK4 inhibitor sensitivity. While 

underpowered due to limited sample size (correlation of |r| > 0.950 required for significance at 

N=4), this analysis demonstrates the feasibility of orthogonal validation using independent 

pharmacogenomics datasets and supports the clinical translation potential of CNA-based 

synthetic lethal screening approaches. Figure 6 contains a panel comprising the tractable genes 

and associated pathways.  
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Figure 6: Translational Validation and Tractability of Synthetic Lethal Biomarkers. 
(A) Ranked distribution of the top 25 tractability scores derived from Open Targets, highlighting genes with existing 
approved drugs or high-confidence tractability predictions.​
(B) Validation plot showing the association between CHD7 amplification and sensitivity to palbociclib (target: 
CDK4). A strong negative correlation was observed (r = –0.763), although it did not reach statistical significance (p 
= 0.237) due to the limited number of available HGSOC cell lines (n = 4).​
(C) Bokeh chord plot mapping amplified biomarkers to their enriched biological pathways, as derived from pathway 
collapse and g:Profiler analysis.​
(D) Bokeh chord plot of tractable synthetic lethal targets and their associated pathways, focusing on genes with 
clinical or therapeutic evidence of tractability.  
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Discussion 
Copy Number Alterations as a Distinct Genomic Lens for Synthetic Lethality 

Our identified synthetic lethal interactions extend beyond the canonical BRCA–PARP paradigm, 

providing a benchmark to contextualise the novelty and potential impact of the HGSOC-specific, 

copy-number-driven vulnerabilities uncovered here. Because this work is copy-number focused, 

tumour suppressors such as TP53 and BRCA1/2, typically inactivated through mutation or 

promoter methylation rather than copy number alteration were not central to the analysis 

(Eskander and Tewari, 2014). This shift in emphasis allowed us to uncover new vulnerabilities 

through a distinct genomic lens.  

This study focused on genes passing the stringent TCGA GISTIC2 thresholds for deep 

amplification (+2) or homozygous deletion (–2). Consequently, tumour suppressors more 

commonly observed in the shallow deletion range (–1), such as PTEN, were not retained in our 

analysis, despite their biological relevance in HGSOC. Nevertheless, this filtering captured the 

key recurrent alterations reported by TCGA, including amplifications of MECOM, MAPK1, 

KRAS, CCNE1 and PIK3CA, and deletions of NF1 and RB1 (Bell et al., 2011). 

 

Contextualising Putative Synthetic Lethal Pairs vs. Canonical Synthetic Lethal Vulnerabilities 

Canonical synthetic-lethal paradigms, such as SMARCA4-deficient cells exhibiting strong 

depletion of SMARCA2 (Ehrenhöfer-Wölfer et al., 2019), or STAG2-deficient isogenic cells 

undergoing uniform cell death upon STAG1 knockdown (Mondal et al., 2019), are consistently 

described in the literature as acute, lethal, or strongly cytotoxic. By contrast, our 

copy-number-driven model yields modest but statistically robust regression slopes (median d ≈ 

−0.26) across 17 cell lines, alongside substantial potency deltas (median Δ ≈ −0.36) and strong 

statistical confidence (median FDR ≈ 0.005).  

We recognise that the scales and readouts differ fundamentally: our study employs multi-line 

regression analysis of high-level amplification states (GISTIC score +2), while canonical studies 

use acute knockout or complete gene depletion in single or isogenic systems. Thus, comparisons 

should be taken as qualitative indicators of biological plausibility rather than numeric 

equivalences. Importantly, our amplification-driven approach captures a distinct biological 

scenario, the effects of oncogene overexpression rather than complete gene loss, which naturally 

leads to more graded dependency effects. Importantly, amplification-linked dependencies may 
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carry greater translational weight in HGSOC, where recurrent oncogene gains such as CCNE1, 

MECOM, and KRAS are far more prevalent than complete gene deletions (Harbers et al., 2021). 

More broadly, meta-analyses have observed that oncogene-related synthetic lethal interactions 

often manifest with smaller effect sizes, highlighting that modest but consistent dependencies can 

still be biologically meaningful and therapeutically relevant (Lord, Quinn and Ryan, 2020). 

Nevertheless, the consistency of "strong" vulnerability labels in established SL models provides 

a qualitative benchmark for assessing the biological significance and translational potential of 

our copy-number-specific hits. 

 

Transport-Enriched Biomarkers and Oncogenic-Enriched Targets Reflect Canonical Synthetic 
Lethal Network Logic 

In our dataset, the divergence between transport‑centred enrichment among biomarkers (e.g., 

protein/nitrogen compound transport, intracellular/Golgi vesicle transport, cellular localisation) 

and oncogenic pathway enrichment among targets (mitotic cell cycle, chromatin 

organisation/remodelling, DNA repair) reflects the underlying biology of copy-number-driven 

HGSOC, (see Figure 6C & 6D). 

Extensive somatic copy‑number alterations (SCNAs) in HGSOC create broad amplification 

blocks that inevitably carry “passenger” genes whose dosage shifts perturb homeostatic 

processes such as trafficking and localisation, yielding transport‑biased biomarker signals 

(Beroukhim et al., 2010; Zack et al., 2013). 

By contrast, the genes emerging as tractable targets cluster in cell‑cycle control and 

DNA‑damage response (DDR) pathways, the same axes that genomically unstable tumours 

become dependent upon to buffer replication stress and maintain viability (Kaelin, 2005; 

O’Connor, 2015; McGranahan and Swanton, 2017; Lecona and Fernandez-Capetillo, 2018). 

This interpretation is further reinforced by our tractability analysis, which highlights that key 

cell-cycle regulators such as CCNE1 (Discovery Precedence), CCND1 and CDK4 (Clinical 

Precedence), together with chromatin remodellers including APC, ARID2 and BRPF1 

(high-confidence antibody tractability), are categorised as druggable, (see Figure 6A). This 

convergence of synthetic-lethal logic with tractability evidence underscores the plausibility of 

targeting these dependencies in HGSOC. 

This pattern aligns with established synthetic‑lethality logic: genome‑wide dosage imbalance 

creates collateral vulnerabilities in essential maintenance circuits, while oncogene‑addicted states 
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concentrate selective pressure onto a small set of survival pathways (Kaelin, 2005; Weinstein and 

Joe, 2006). In HGSOC specifically, TCGA showed that high‑grade serous tumours are 

dominated by SCNAs, with recurrent amplifications (e.g., CCNE1, MECOM, KRAS) and 

frequent pathway disruptions in RB, PI3K/RAS, homologous recombination and FOXM1 

networks, exactly the domains where SL targets are expected to sit (Bell et al., 2011).  

Furthermore, the predominance of network-mediated over direct protein interactions (81.1% 

versus 3.3%, see Figure 4B) supports a model wherein synthetic lethal relationships arise 

through disruption of interconnected functional modules.  

Taken together, transport‑skewed biomarkers are best interpreted as signatures of CNA‑induced 

cellular burden, whereas the enrichment of targets in cell‑cycle/DDR/chromatin modules reflects 

actionable dependencies predicted by, and repeatedly validated in synthetic‑lethal biology, 

including the mutation‑centred BRCA–PARP archetype (Helleday, 2011; Eskander and Tewari, 

2014). 

 

Meaningful yet Modest Survival Signals 

The observed hazard ratios in our HGSOC biomarker analysis, ranging from 1.31 to 1.58 for 

nominally significant (p-value < 0.05) associations, represent clinically meaningful effect sizes 

that warrant further investigation despite falling below the threshold typically associated with 

strong prognostic markers (Azuero, 2016). These moderate hazard ratios are consistent with the 

polygenic nature of copy-number-driven oncogenesis in HGSOC, where individual amplified 

genes contribute incrementally to disease progression rather than exerting dominant effects 

(Beroukhim et al., 2010). The convergence of several biomarkers around the 1.4-1.5 HR range 

suggests a coherent biological signal, particularly notable given that genes like CCNE1, a 

well-established driver in HGSOC, achieved statistical significance with an HR of 1.33, 

validating our analytical approach (Etemadmoghadam et al., 2009). In the context of HGSOC's 

genomic complexity, where therapeutic options remain limited and prognosis is challenging to 

stratify, biomarkers with HRs exceeding 1.3 could provide clinically actionable information for 

patient stratification and treatment planning, especially when combined in multi-gene prognostic 

models (Waldron et al., 2014). 
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From Synthetic Lethality to Therapeutic Translation 

Among the tractable targets, a subset such as CDK4 and RAF1 aligns with existing drug 

portfolios and near-term translational opportunities, whereas others represent long-term 

exploratory candidates requiring novel therapeutic development. Translation of these findings 

into practice will also demand companion diagnostics capable of robustly identifying 

amplification-positive patients. Crucially, our tractability analysis demonstrates that 7 

high-priority targets already have approved drugs (KRAS, CDK4, RAF1, ACLY, TXNRD1, 

RPL28, NDUFA2), positioning them for near-term translational testing. A further 13 genes with 

clinical precedence expand this into a realistic medium-term pipeline, while the remaining novel 

candidates (including kinases like MAP3K7 and MARK2) represent the long-horizon exploratory 

space. This stratification frames a rational drug development roadmap: immediate translation 

with repurposing opportunities, medium-term investment in clinically advanced targets, and 

long-term innovation to capture currently intractable biology, see Supplementary Table 2 for a 

complete gene to translational impact annotation. 

 

Strengths, Limitations and Future Directions 

This study leverages integrative in-silico pipelines and large-scale functional datasets, yet its 

reliance on cell line models and absence of orthogonal pharmacological validation underscores 

the need for experimental follow-up to substantiate clinical relevance.  

While our computational framework identified 735 potent synthetic lethal interactions, the 

limited availability of corresponding drugs in pharmacogenomic databases (only 2 of 28 

compounds in GDSC) constrained systematic validation. Future experimental work should 

prioritise functional CRISPR screens in HGSOC cell lines with defined amplification profiles, 

followed by drug sensitivity assays using available inhibitors. 

An additional translational avenue is the use of zebrafish xenograft models, which provide a 

rapid and tractable in vivo system to test synthetic lethal dependencies under physiological 

conditions. With their optical transparency, high fecundity, and established oncology 

applications, zebrafish larvae permit real-time monitoring of tumour growth, dissemination, and 

angiogenesis following implantation of human ovarian cancer cells. While few of the 

pharmacological agents implicated in our screen have been systematically evaluated for 

tolerability in zebrafish, prior studies have successfully applied the model to interrogate 
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pathways relevant to our targets (Wei et al., 2022; Madakashira et al., 2024). This suggests that 

zebrafish assays could provide a pragmatic intermediate step, allowing rapid prioritisation of 

tractable synthetic lethal pairs under controlled drug exposure, generating functional evidence to 

de-risk subsequent mammalian validation studies. 

 

Multi-Cancer Pipeline Applicability 

While the pipeline was optimised for HGSOC, its modular design suggests it can be readily 

generalised to other cancers characterised by recurrent copy number alterations and synthetic 

lethal dependencies, such as triple-negative breast cancer, squamous lung carcinoma, and 

high-grade glioma, where chromosomal instability and DNA-damage response vulnerabilities are 

similarly pervasive (Mirchia et al., 2019; Joshi et al., 2021; Silvestri et al., 2022). 

 

Conclusion 
This work establishes a copy-number–centred framework for uncovering synthetic lethal 

vulnerabilities in HGSOC, moving beyond canonical mutation-driven paradigms to highlight 

oncogene amplifications and collateral dependencies as therapeutically actionable features. By 

integrating SCNA–protein regression, CRISPR dependency profiling, tractability scoring and 

survival analysis, the pipeline delineates a spectrum of candidates ranging from near-term 

repurposing opportunities (e.g. CDK4, RAF1, KRAS) to longer-term exploratory targets requiring 

novel drug development. Although the effect sizes observed are modest, they are biologically 

coherent within a polygenic CNA landscape and clinically relevant when aggregated into 

multi-gene models. The limitations inherent to in-silico analyses underscore the importance of 

orthogonal validation, including functional CRISPR assays and zebrafish xenografts as 

intermediate models. More broadly, the modular design enables extension of this framework to 

other SCNA-dominated cancers such as TNBC, squamous lung carcinoma, and glioma, offering 

a generalisable route to prioritise synthetic lethal interactions for translational oncology. 
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Appendices 
Supplementary Figure 1 

 
Supplementary Figure 1: Distribution of GISTIC CNA Scores in TCGA HGSOC. 
Bar plot showing the frequency of copy number alteration (CNA) events across all genes in the TCGA high-grade 
serous ovarian cancer (HGSOC) cohort. CNA states were derived from GISTIC2.0 scores: –2 (deep deletion), –1 
(shallow deletion), 0 (diploid), +1 (low-level gain), and +2 (high-level amplification). The majority of events fall 
within shallow deletion (–1), diploid (0), and low-level gain (+1) categories, with fewer deep deletions and 
high-level amplifications observed. 
 

Supplementary Table 1 

Supplementary Table 1: Annotation of Datasets Used in This Study 

Dataset Source File Name Description Cell Lines 

Available 

TCGA Copy 

Number 

Alterations 

TCGA 

PanCancer Atlas 

(via cBioPortal) 

data_cna.txt Gene-level 

GISTIC2.0 scores 

(–2 to +2) across 

562 HGSOC 

patient samples.  

N/A 
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TCGA 

Protein 

Expression 

(RPPA) 

TCGA 

PanCancer Atlas 

(via cBioPortal) 

data_protein_quantificat

ion.txt 

Normalised RPPA 

expression for 

selected proteins 

in HGSOC 

tumours 

N/A 

Cell Line 

Metadata 

DepMap 

Annotations 
cell lines in High-Grade 

Serous Ovarian 

Cancer.csv 

Used to ensure 

only HGSOC cell 

lines were 

subsetted from 

DepMap files. 

JHOS2, OVMIU , 

OVCAR5, 

SNU119, 

TYKNU, HEY, 

CAOV4, 

NIHOVCAR3, 

COV318, 

HEYA8, 

OVSAHO, 

OVCAR8, 

FUOV1, 

KURAMOCHI, 

OAW28, 59M, 

COV362, JHOS4, 

ONCODG1, 

PEA1, OVKATE, 

OVCAR3, 

CAOV3 

PureCN 

Values 

(DepMap) 

DepMap Public 

24Q4 
OmicsAbsoluteCNGene.csv Absolute CNA 

data for genes in 

HGSOC tumours 

JHOS2, OVMIU, 

OVCAR5, 

SNU119, 

TYKNU, HEY, 

CAOV4, 

NIHOVCAR3, 

COV318, 

HEYA8, 

OVSAHO, 

OVCAR8, 

FUOV1, 

KURAMOCHI, 

OAW28, 59M, 
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COV362, JHOS4, 

ONCODG1, 

PEA1, OVKATE 

CRISPR 

Dependency 

Scores 

DepMap 

(DEMETER2/A

vana) 

CRISPRGeneEffect.csv Gene dependency 

scores from 

pooled CRISPR 

screens in cancer 

cell lines 

JHOS2, OVMIU, 

OVCAR5, 

TYKNU, HEY, 

CAOV4, 

NIHOVCAR3, 

COV318, 

HEYA8, 

OVCAR8, 

KURAMOCHI, 

OAW28, 59M, 

COV362, JHOS4, 

CAOV3, 

ONCODG1, 

PEA1 

 

Supplementary Figure 2 

 
Supplementary Figure 2: Cross-Validation of TCGA CNA–Protein Hits in HGSOC Cell Lines. 
Venn diagrams comparing the 737 TCGA genes with significant CNA–protein associations (p < 0.05) to genes 
altered in DepMap HGSOC cell lines. (Left) Amplifications were defined as absolute copy number ≥ 6, observed in 
≥3 lines (n = 4,556). This analysis identified 325 overlapping genes supported in both TCGA tumours and cell lines. 
(Right) Deletions were defined as absolute copy number < 1, observed in ≥3 lines (n = 42). No overlap with the 
TCGA significant set was detected. 
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Supplementary Figure 3 

 
Supplementary Figure 3: Top shared protein interactors across synthetic‑lethal pairs. 
Bar chart showing the 20 most frequent shared protein interactors among the representative biomarker–target pairs 
(n = 735). Bar length denotes the number of SL pairs in which each interactor is shared. TP53 and MYC, canonical 
tumour suppressor and oncogenic regulator are highlighted, reflecting their recurrent appearance across multiple SL 
relationships. Using BioGRID (>850k PPIs), only 24 pairs (3.3%) had a direct physical interaction, whereas 620 
pairs (84.4%) shared ≥1 indirect interactor, indicating extensive network‑level connectivity among SL candidates.
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Supplementary Table 2 

Supplementary Table 2: Tractability Classification of Synthetic Lethal Target Genes 
 

Tier 1: Clinical Translation Ready (7 targets) 
Genes with approved drugs demonstrating immediate therapeutic potential 

Gene 
Symbol 

Gene Name Primary 
Function 

Drug 
Status 

Representative 
Drugs 

SM 
Tractability 

AB 
Tractability 

KRAS KRAS 
proto-oncogene 

Oncogenic 
signalling 

Approved AMG 510 
(Sotorasib), 
MRTX849 
(Adagrasib) 

Clinical 
Precedence 

High 
Confidence 

CDK4 Cyclin-depende
nt kinase 4 

Cell cycle 
regulation 

Approved Palbociclib, 
Ribociclib, 
Abemaciclib 

Clinical 
Precedence 

Unknown 

RAF1 Raf-1 
proto-oncogene 

MAPK 
pathway kinase 

Approved Sorafenib Clinical 
Precedence 

High 
Confidence 

ACLY ATP citrate 
lyase 

Metabolic 
enzyme 

Approved Bempedoic acid Clinical 
Precedence 

High 
Confidence 

TXNRD1 Thioredoxin 
reductase 1 

Redox 
homeostasis 

Approved Auranofin Clinical 
Precedence 

Unknown 

NDUFA2 NADH 
dehydrogenase 
subunit 

Mitochondrial 
respiration 

Approved Various Clinical 
Precedence 

High 
Confidence 

RPL28 Ribosomal 
protein L28 

Protein 
synthesis 

Approved Homoharringtonine Clinical 
Precedence 

Unknown 
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Tier 2: Pipeline Ready (6 targets) 
Genes with strong clinical precedence in advanced trials 

Gene 
Symbol 

Gene Name Primary 
Function 

Clinical 
Status 

SM 
Tractability 

AB 
Tractability 

Strategic Value 

RELA RelA (p65 NF-κB 
subunit) 

Transcription 
factor 

Advanced 
Clinical 

Clinical 
Precedence 

Unknown Inflammation-ca
ncer nexus 
targeting 

BIRC2 Baculoviral IAP 
repeat 2 

Apoptosis 
inhibitor 

Advanced 
Clinical 

Clinical 
Precedence 

Unknown Direct apoptosis 
pathway 
modulation 

CCND1 Cyclin D1 Cell cycle 
regulator 

Advanced 
Clinical 

Clinical 
Precedence 

Unknown G1/S checkpoint 
control 

MEN1 Menin Tumour 
suppressor 

Phase 1 
Clinical 

Clinical 
Precedence 

Unknown Epigenetic 
regulation 

KMT2A Lysine 
methyltransferase 
2A 

Histone 
methylation 

Phase 1 
Clinical 

Clinical 
Precedence 

Unknown Chromatin 
remodelling 
target 

METAP1 Methionyl 
aminopeptidase 1 

Protein 
processing 

Advanced 
Clinical 

Clinical 
Precedence 

Medium-Low 
Confidence 

Novel 
mechanism 
exploitation 
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Tier 3: Discovery Highlights (Multi-Modal Opportunities) (27 targets) 
Genes tractable through multiple modalities with high biological significance 

Tier 3A: High-Confidence Multi-Modal (20 targets) 
Both small molecule and high-confidence antibody tractable 

Gene 
Symbol 

Gene Name Primary 
Function 

SM 
Tractability 

AB 
Tractability 

Biological 
Significance 

MAP3K7 Mitogen-activated 
protein kinase kinase 
kinase 7 

Kinase 
signalling 

Discovery 
Precedence 

High 
Confidence 

Stress response 
pathway 
regulation 

MARK2 MAP/microtubule 
affinity regulating 
kinase 2 

Protein kinase Discovery 
Precedence 

High 
Confidence 

Microtubule 
dynamics control 

ILK Integrin-linked kinase Cell adhesion 
kinase 

Discovery 
Precedence 

High 
Confidence 

Cell survival and 
adhesion 

G6PD Glucose-6-phosphate 
dehydrogenase 

Metabolic 
enzyme 

Discovery 
Precedence 

High 
Confidence 

Glucose 
metabolism 
regulation 

RICTOR RPTOR independent 
companion of MTOR 

mTOR complex 
component 

Discovery 
Precedence 

High 
Confidence 

Growth signaling 
control 

RAC1 Rac family small 
GTPase 1 

Small GTPase Discovery 
Precedence 

High 
Confidence 

Cytoskeleton and 
motility 

WWTR1 WW domain containing 
transcription regulator 1 

Transcription 
cofactor 

Discovery 
Precedence 

High 
Confidence 

Hippo pathway 
regulation 

VPS4B Vacuolar protein sorting 
4 homolog B 

Vesicle 
trafficking 

Discovery 
Precedence 

High 
Confidence 

Autophagy 
regulation 

ARID2 AT-rich interaction 
domain 2 

Chromatin 
remodelling 

Discovery 
Precedence 

High 
Confidence 

SWI/SNF 
complex 
component 

BRPF1 Bromodomain and PHD 
finger containing 1 

Epigenetic 
regulator 

Discovery 
Precedence 

High 
Confidence 

Histone 
acetylation 
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XPR1 Xenotropic and 
polytropic retrovirus 
receptor 1 

Phosphate 
exporter 

Discovery 
Precedence 

High 
Confidence 

Phosphate 
homeostasis 

YTHDC1 YTH domain containing 
1 

RNA binding 
protein 

Discovery 
Precedence 

High 
Confidence 

mRNA 
processing 

TDG Thymine DNA 
glycosylase 

DNA repair 
enzyme 

Discovery 
Precedence 

High 
Confidence 

Base excision 
repair 

TARM1 T cell receptor 
associated 
transmembrane adaptor 
1 

Membrane 
adaptor 

Unknown High 
Confidence 

T cell signalling 

STXBP3 Syntaxin binding 
protein 3 

Vesicle 
trafficking 

Unknown High 
Confidence 

SNARE complex 
regulation 

STX4 Syntaxin 4 Vesicle fusion Unknown High 
Confidence 

Membrane 
trafficking 

SNAP23 Synaptosome associated 
protein 23 

SNARE protein Unknown High 
Confidence 

Vesicle 
exocytosis 

SLC4A7 Solute carrier family 4 
member 7 

Ion transporter Unknown High 
Confidence 

pH homeostasis 

SLC7A1 Solute carrier family 7 
member 1 

Amino acid 
transporter 

Unknown High 
Confidence 

Arginine 
transport 

SLC44A3 Solute carrier family 44 
member 3 

Choline 
transporter 

Unknown High 
Confidence 

Choline 
metabolism 

 

Tier 3B: Promising Discovery Targets (7 targets) 
High biological significance with tractability potential 

Gene 
Symbol 

Gene Name Primary Function SM 
Tractability 

AB 
Tractability 

Notes 

CCNE1 Cyclin E1 Cell cycle regulator Discovery 
Precedence 

Unknown S-phase 
progression 
control 
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APC APC regulator of 
WNT signalling 

Tumour suppressor Discovery 
Precedence 

High 
Confidence 

Wnt pathway 
regulation 

ALDOC Aldolase, 
fructose-bisphosphat
e C 

Glycolytic enzyme Predicted 
Tractable 

High 
Confidence 

Metabolic 
reprogramming 

KDM2A Lysine demethylase 
2A 

Histone 
demethylase 

Discovery 
Precedence 

Unknown Chromatin 
modification 

KMT5A Lysine 
methyltransferase 
5A 

Histone 
methyltransferase 

Discovery 
Precedence 

Unknown H4K20 
methylation 

L3MBTL3 L3MBTL histone 
methyl-lysine 
binding protein 3 

Chromatin reader Discovery 
Precedence 

Unknown Epigenetic 
regulation 

SMARCA4 SWI/SNF related 
chromatin 
remodelling 
complex subunit 

Chromatin 
remodeller 

Discovery 
Precedence 

Unknown SWI/SNF 
complex ATPase 

Legend: 

●​ SM: Small Molecule tractability 
●​ AB: Antibody tractability 
●​ Clinical Precedence: Compounds in clinical trials or approved 
●​ Discovery Precedence: Known binding sites or structural information 
●​ Predicted Tractable: Computational prediction of druggability 
●​ High/Medium/Low Confidence: Based on subcellular localisation and accessibility scores 

Data Source: Open Targets Platform tractability assessment for synthetic lethal target genes identified from 
HGSOC dependency screens. 
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